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Motivation

Goal: Learn the intervention that has the largest positive causal effect on a variable of interest.

Impossible from observational data without unverifiable assumptions about the causal graph.

Instead, we can intervene...but this is expensive.

How can we most efficiently select which interventions to perform?

Existing causal algorithms:
Causal assumptions hold =⇒ More efficient interventions!
Causal assumptions fail =⇒ Learn biased estimates.

Our novel method:
Causal assumptions hold =⇒ Optimally efficient interventions!
Causal assumptions fail =⇒ Still learn causal effects!

That is, our method adapts to the presence of causal structure.
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Causal Inference with Interventions via Multi-Armed Bandits

Standard Multi-Armed Bandits
• Sequentially pick intervention At ∈ A
• Observe reward Yt
• Goal is to learn optimal intervention arg maxa∈A EaY

Without more structure, this can be necessarily inefficient.
In practice, we also observe other information when we take an intervention.

Multi-Armed Bandits with Post-Action Contexts: Also observe Zt ∈ Z.
We have no guarantees that observing Zt will help us...but we would like to exploit it when we can.

An environment ν is a fixed collection of distributions on (Z,Y): one for each a ∈ A.
A policy π maps the observed history (A1, Z1, Y1, . . . , At−1, Zt−1, Yt−1) to a distribution over At.

Regret: Rν,π(T ) = T ·maxa∈A Eνa

[
Y

]
− Eν,π

[ ∑T
t=1 Yt

]
.
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The Punchline: High-Level Overview of Results

We formalize when Zt is helpful: conditionally benign environments.
Existing causal algorithms have regret depending on |Z| instead of |A|.

Existing algorithms can have regret linear in T in the worst case.
This means they don’t even have a consistent estimate of the causal effect!

We formalize adaptive minimax optimality for the conditionally benign property.
Optimality is impossible: efficient interventions necessarily sacrifice worst-case performance.

We provide a new algorithm with:
a) optimal performance for conditionally benign environments and
b) sublinear regret (always learns causal effects).
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Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Impossibility Result

Without any assumptions beyond IID,
UCB (Auer at al. 2002): Rν,UCB(T ) = Θ̃(

√
|A|T )

Definition (informal)
An environment ν is conditionally benign if and only if νa(Y | Z) is constant as a function of a ∈ A.

When the environment ν is conditionally benign and the marginal distributions ν(Z) are known,
C-UCB (Lu et al. 2020; BWR Thm 4.3): Rν,C-UCB(T ) = Θ̃(

√
|Z|T )

But in the worst case, Rν,C-UCB(T ) ≥ Ω(T )

Theorem: Strict adaptation to the conditionally benign property is impossible.

If π is such that Rν,π(T ) ≤ O(
√
|A|T ) for all ν,

there exists ν that is conditionally benign but Rν,π(T ) ≥ Ω(
√
|A|T ).

Can we adapt at all?

5/8



Adaptive Results

Previous work requires that we know ν(Z) = {νa(Z) : a ∈ A} in advance.
Instead suppose that we have access to an estimate ν̃(Z).

Hypothesis-Tested Adaptive C-UCB (HAC-UCB)
1. Optimistically suppose environment is conditionally benign and play C-UCB.
2. On each round, perform a hypothesis test for whether to switch to UCB.

We don’t have to accurately identify failure of conditionally benign...
...just when that failure causes bad decision making.

Main Theorem: Our new algorithm HAC-UCB achieves non-trivial adaptivity.
For any A, Z, T , ν, and ν̃,

Rν,HAC-UCB(T ) ≤ Õ(T 3/4).

Further, if ν is conditionally benign and ‖ν(Z)− ν̃(Z)‖ ≤ ε,

Rν,HAC-UCB(T ) ≤ Õ(
√
|Z|T + εT ) .

6/8



Adaptive Results

Previous work requires that we know ν(Z) = {νa(Z) : a ∈ A} in advance.

Instead suppose that we have access to an estimate ν̃(Z).

Hypothesis-Tested Adaptive C-UCB (HAC-UCB)
1. Optimistically suppose environment is conditionally benign and play C-UCB.
2. On each round, perform a hypothesis test for whether to switch to UCB.

We don’t have to accurately identify failure of conditionally benign...
...just when that failure causes bad decision making.

Main Theorem: Our new algorithm HAC-UCB achieves non-trivial adaptivity.
For any A, Z, T , ν, and ν̃,

Rν,HAC-UCB(T ) ≤ Õ(T 3/4).
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Further, if ν is conditionally benign and ‖ν(Z)− ν̃(Z)‖ ≤ ε,

Rν,HAC-UCB(T ) ≤ Õ(
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For any A, Z, T , ν, and ν̃,

Rν,HAC-UCB(T ) ≤ Õ(T 3/4).

Further, if ν is conditionally benign and ‖ν(Z)− ν̃(Z)‖ ≤ ε,

Rν,HAC-UCB(T ) ≤ Õ(
√
|Z|T + εT ) .
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Simulation Results
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Pareto Frontier of Causal Bandits

Worst-case optimal: UCB (Auer at al. 2002), Conditionally benign optimal: C-UCB (Lu et al. 2020)
New algorithm: HAC-UCB (this work)
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Understanding UCB and C-UCB

Upper Confidence Bound (UCB) Algorithm:
• Maintain empirical mean estimate µ̂t(a) for each t ∈ [T ] and a ∈ A
• Use concentration inequality to construct confidence bound UCBt(a) = µ̂t(a) +

√
log(T )/Nt(a)

• Play At = arg maxa∈A UCBt(a)

Causal Upper Confidence Bound (C-UCB) Algorithm:
• Maintain empirical mean estimate µ̂t(z) for each t ∈ [T ] and z ∈ Z
• Use concentration inequality to construct confidence bound UCBt(z) = µ̂t(z) +

√
log(T )/Nt(z)

• Play At = arg maxa∈A
∑
z∈Z UCBt(z)Pν̃a

[Z = z]

Why does this work?
If all parents are observed (more generally, ν is conditionally benign) and ν̃(Z) is accurate,∑

z∈Z
UCBt(z)Pν̃a

[Z = z] ≈ UCBt(a),

but concentration only requires a union bound of size |Z| instead of size |A|.
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Adapting with Hypothesis Testing: HAC-UCB

Intuition: Optimistically play C-UCB until a hypothesis test for conditionally benign fails, then play UCB.
(1) Initial Exploration
Uniformly sample a ∈ A for

√
T/|A| rounds.

Compute MLE estimate ν̂ of (νa(Z))a∈A. If supa∈A ‖ν̃a − ν̂a‖1 & T−1/4, set ν̃ ← ν̂.

Optimistic Phase: For each round t...
UCBt(a) ≈ Êνa

[Y ] +
√

(log T )/Na(t).

ŨCBt(a) ≈
∑
z∈Z [Êν [Y | Z = z] +

√
(log T )/Nz(t)]ν̃a(Z = z).

If UCBt(a) ≈ ŨCBt(a), play At+1 = arg maxa∈A ŨCBt(a).

Otherwise, switch to Pessimistic Phase.

Pessimistic Phase: For remaining rounds t, play At+1 = arg maxa∈AUCBt(a).
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If UCBt(a) ≈ ŨCBt(a), play At+1 = arg maxa∈A ŨCBt(a).
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Pessimistic Phase: For remaining rounds t, play At+1 = arg maxa∈AUCBt(a).
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Proof Sketch for HAC-UCB

(1) Exploration Rounds
In the worst case, C-UCB never plays the optimal a ∈ A.
To circumvent this, we explore each a ∈ A for an initial

√
T/|A| rounds.

This is fine from a minimax perspective since even conditionally benign forces
√
T regret.

Estimating a multinomial to scale ε takes ≈ 1/ε2 samples,
so we also use the initial exploration to obtain an ε = T−1/4 accurate estimate of ν(Z).

(2) Optimistic Rounds
a) If the conditionally benign assumption holds,

UCBt(a) ≈ ŨCBt(a) and the algorithm correctly plays optimistically.

b) If the conditionally benign assumption fails,
either UCBt(a) 6≈ ŨCBt(a) and the algorithm correctly plays pessimistically,
or the regret incurred from playing optimistically is still sufficiently small.
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More on Conditionally Benign

Suppose we have a fixed DAG G on (A×Z × Y).

(a)

A Z Y

(b)

A Z Y

(c)

A Z Y

U
(d)

A Z Y

U

(a) conditionally benign and d-separated
(b) not conditionally benign
(c) conditionally benign through front-door, not d-separated
(d) no adjustment possible, not conditionally benign
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More on Conditionally Benign

Suppose we have a fixed DAG G on (A×Z × Y). Let GA denote the graph with edges into A removed.

Theorem
Let A be all hard interventions.
Z d-separates Y from A on G if and only if every Markov relative ν on G is conditionally benign on A.

Theorem
Let A0 be all hard interventions except the null (observational) intervention.
Z d-separates Y from A on GA if and only if every Markov relative ν on G is conditionally benign on A0.

Proposition
If Z satisfies the front-door criterion with respect to (A, Y ) on G then Z d-separates Y from A on GA .
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