

Contribution Summary

- First adaptive regret bounds with respect to causal assumptions.
- Impossibility result: no algorithm can be strictly adaptive.
- Novel **lower bounds** for existing causal bandit algorithms.
- General **algorithmic framework** achieves adaptivity with hypothesis testing.

Causal Multi-Armed Bandits

Standard Multi-Armed Bandits

- Sequentially pick intervention $A_t \in \mathcal{A}$
- Observe reward $Y_t \in [0, 1]$
- Goal is to learn optimal action $\arg \max_{a \in \mathcal{A}} \mathbb{E}_a Y$

Bandits with Post-Action Contexts

Also observe $Z_t \in \mathbb{Z}$ after A_t .

We have no guarantees that observing Z_t will help us... ...but we would like to exploit it when we can.

An environment ν is a collection of distributions on $(\mathcal{Z}, \mathcal{Y})$: one for each $a \in \mathcal{A}$. A **policy** π maps the observed history to actions.

Regret: $R_{\nu,\pi}(T) = T \cdot \max_{a \in \mathcal{A}} \mathbb{E}_{\nu_a}[Y] - \mathbb{E}_{\nu,\pi}[\sum_{t=1}^{T} Y_t].$

Existing State of the Art

UCB (Auer et al. 2002): For any ν , $R_{\nu, \cup CB}(T) = \tilde{\Theta}\left(\sqrt{|\mathcal{A}|T}\right)$.

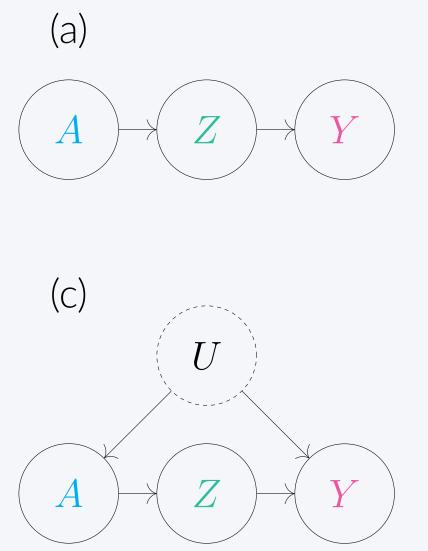
C-UCB (Lu et al. 2020): Under causal assumptions on ν , $R_{\nu,c\text{-ucb}}(T) = \tilde{\Theta}(\sqrt{|\mathcal{Z}|T})$.

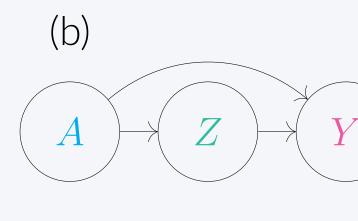
We prove that when causal assumptions fail, C-UCB can incur linear regret!

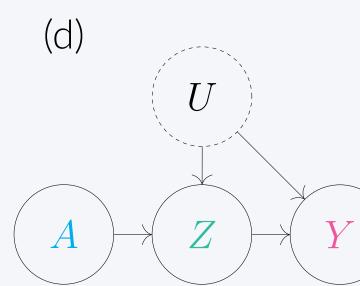
Conditionally Benign Property

Definition 3.1. An environment ν is conditionally benign if and only if $\nu_a(Y|Z)$ is constant as a function of $a \in \mathcal{A}$.

Examples.







A: intervention, Z: post-action context, Y: reward, and U: unobserved variable. (a) the environment is conditionally benign,

(b) the environment need not be conditionally benign,

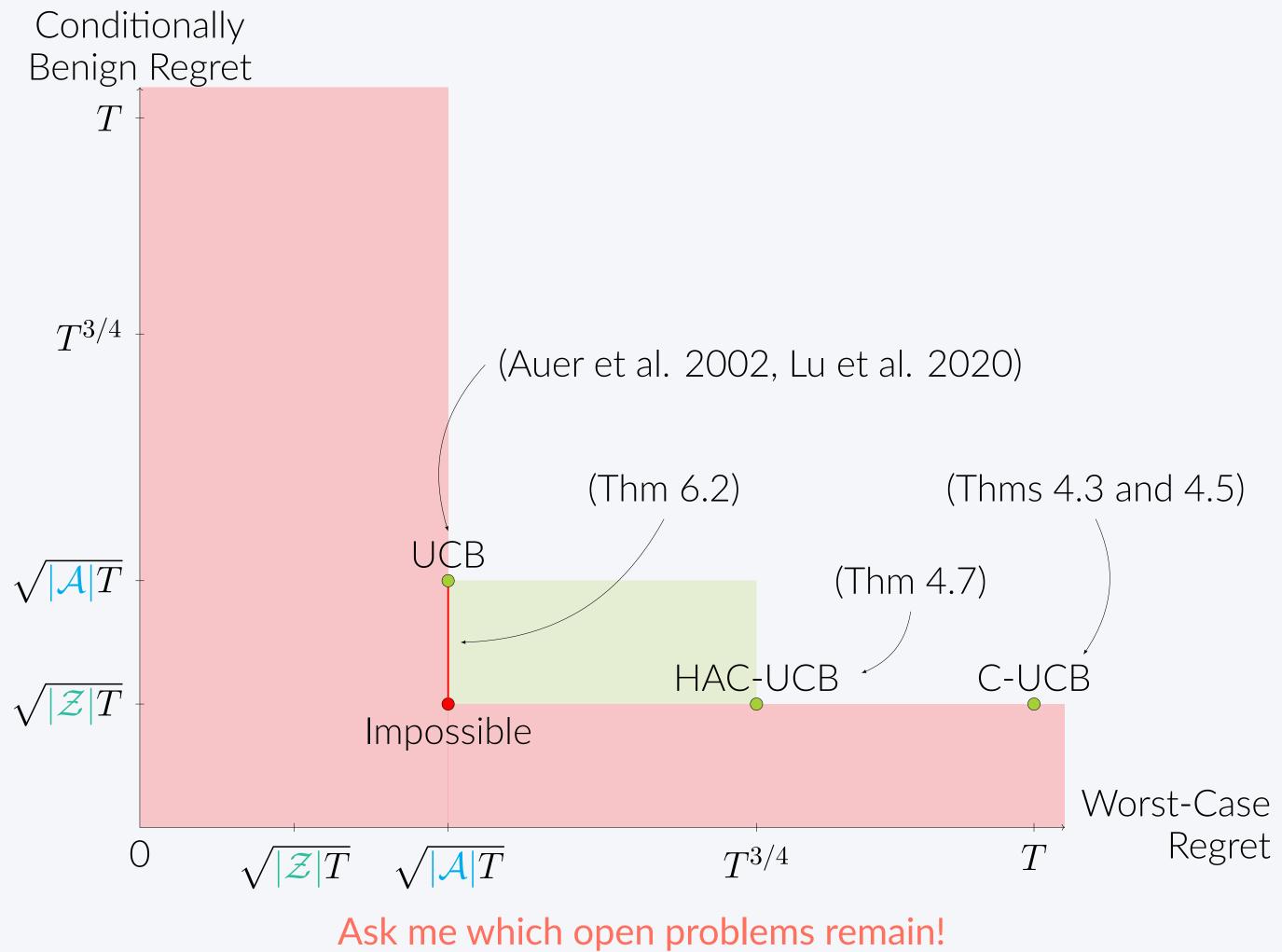
(c) the environment is conditionally benign if \mathcal{A} is only hard interventions, (d) the environment need not be conditionally benign.

Ask me how this generalizes *d*-separation and the front-door criterion!

Adaptively Exploiting *d*-Separators with Causal Bandits

¹ University of Toronto ² Vector Institute

Pareto Frontier of Causal Bandits



Novel Algorithm: HAC-UCB

Input $\tilde{\nu}$: Initial guess for $(\nu_a(Z))_{a \in \mathcal{A}}$.

Initial Exploration: Uniformly sample $a \in \mathcal{A}$ for $\sqrt{T}/|\mathcal{A}|$ rounds. Compute MLE estimate $\hat{\nu}$ of $(\nu_a(Z))_{a \in \mathcal{A}}$. If $\sup_{a \in \mathcal{A}} \|\tilde{\nu}_a - \hat{\nu}_a\|_1 \gtrsim T^{-1/4}$, set $\tilde{\nu} \leftarrow \hat{\nu}$.

Optimistic Phase: For each round t... $\text{UCB}_t(\boldsymbol{a}) \approx \hat{\mathbb{E}}_{\nu_a}[\boldsymbol{Y}] + \sqrt{(\log T)/N_a(t)}.$

 $\widetilde{\text{UCB}}_t(a) \approx \sum_{z \in \mathcal{Z}} \left| \hat{\mathbb{E}}_{\nu}[Y \mid Z = z] + \sqrt{(\log T)/N_z(t)} \right|$

If $UCB_t(a) \approx \widetilde{UCB}_t(a)$, play $A_{t+1} = \arg \max_{a \in \mathcal{A}} UCB_t(a)$ Otherwise, switch to Pessimistic Phase.

Pessimistic Phase: For remaining rounds t, play $A_{t+1} = \arg \max_{a \in A} \operatorname{UCB}_t(a)$.

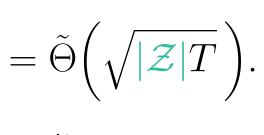
The key technical challenge is defining \approx to balance optimism and pessimism.

- If the conditionally benign assumption holds, $UCB_t(a) \approx UCB_t(a)$ and the algorithm correctly plays optimistically.
- If the conditionally benign assumption fails, either $UCB_t(a) \not\approx UCB_t(a)$ and the algorithm correctly plays pessimistically, or the regret incurred from playing optimistically is still sufficiently small.

Worst-Case Lower Bound

Theorem 4.5. For every \mathcal{A} and \mathcal{Z} , there exists ν such that

 $\lim_{T \to \infty} \frac{R_{\nu, \text{c-ucb}}(T)}{T} \ge 1/120.$



Blair Bilodeau^{1,2} Linbo Wang¹ Daniel M. Roy^{1,2}

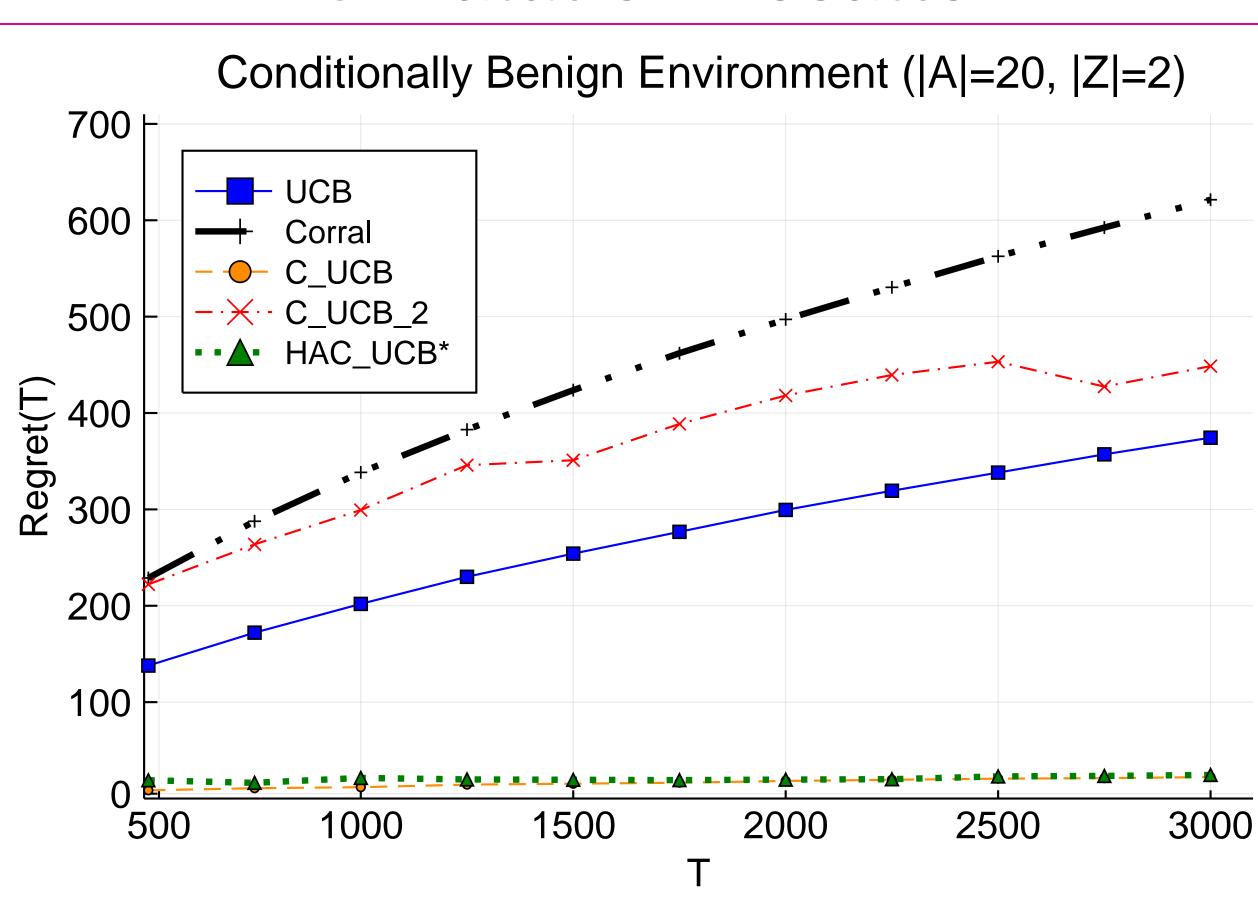
Adaptive Upper Bound

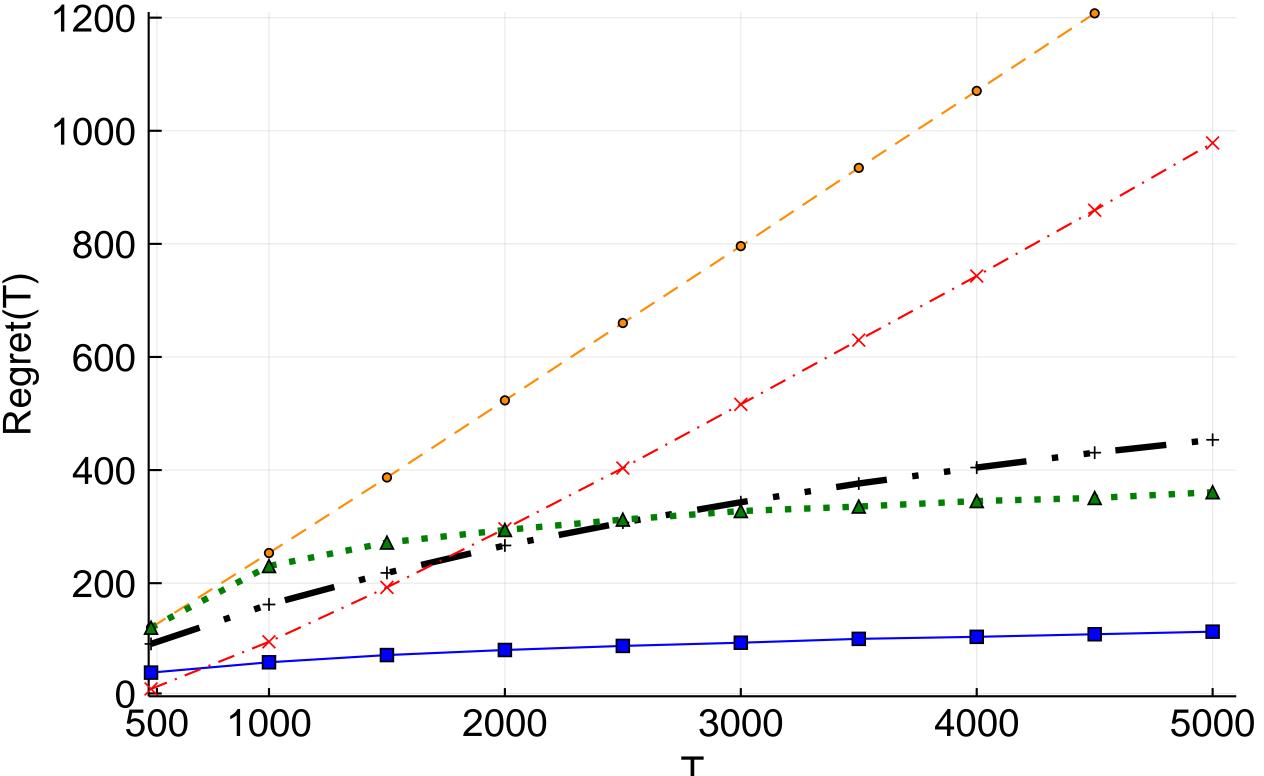
Theorem 4.7. For any $\mathcal{A}, \mathcal{Z}, T, \nu$, and $\tilde{\nu}$, $R_{\nu,\text{HAC-UCB}}(T) \leq \tilde{O}(T^{3/4}).$ Further, if ν is conditionally benign and $\sup_{a \in \mathcal{A}} \|\tilde{\nu}_a - \nu_a\|_1 \leq \varepsilon$, $R_{\nu,\text{hac-ucb}}(T) \leq \tilde{O}\left(\sqrt{|\mathcal{Z}|T} + \varepsilon T\right).$ Ask me how this avoids making any causal assumptions!

Impossibility Result

Theorem 6.2. If π is such that $R_{\nu,\pi}(T) \leq O\left(\sqrt{|\mathcal{A}|T}\right)$ for all ν , there exists ν that is conditionally benign but $R_{\nu,\pi}(T) \ge \Omega\left(\sqrt{|\mathcal{A}|T}\right)$

Simulation Results





$$\overline{t)}] \tilde{\nu}_{a}(Z = z).$$

$$\widetilde{\text{JCB}}_{t}(\underline{a}).$$

