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Contribution Summary

First stochastic convergence rates of multi-point adaptive

quadrature for Bayesian inference.

Fast procedure for high-dimensional models combining multi-

and single-point adaptive quadrature techniques.

Efficient and robust implementation of these methods in the

aghq package, demonstrated on multiple challenging examples.

Approximate Bayesian Inference

Setup

Model: Y (n) = (Y1, . . . , Yn) ∼ π(Y (n) | θ∗), θ∗ ∈ Θ ⊆ Rp

Inference: π(θ | Y (n)) = π(Y (n) | θ)π(θ)/π(Y (n))
We want moments, quantiles, marginals, predictive distributions, etc.

MCMC: Draw samples from an implicit approximation of π(θ | Y (n))
Easy to obtain summaries once you have samples.

Theoretical guarantees exist.

Can be (computationally) challenging, even for low-dimensions.

Quadrature: Numerically obtains an explicit approximation of π(Y (n))
Software can make this very fast and stable.

Theoretical guarantees for the stochastic setting are limited.

Adaptive Numerical Quadrature

Numerical Quadrature

Approximate an integral using∫
Θ

f (θ)dθ ≈
∑
z∈Q

f (z)ω(z).

Adaptive Quadrature

Recall π(Y (n)) =
∫

π(θ, Y (n))dθ.
The function fn(θ) = π(θ, Y (n)) changes with n through Y (n).

Have to adapt the numerical quadrature rule to Y (n).

Naylor and Smith (1982) propose...

Mode: θ̂n = arg maxθ∈Θ π(Y (n), θ)
Curvature: L̂n = lower Cholesky of −∂2

θ log π(θ, Y (n))|θ=θ̂n

π̃(Y (n)) = |L̂n|
∑
z∈Q

π(L̂nz + θ̂n, Y (n)) ω(z).

Low-Dimensional Example

Spread of disease among a grid of n = 520 tomato plants.
EpiILMCT: continuous-time, individual-levels models for disease spread.
The aghq package provides:
Optimization + Quadrature

Summary statistics (expectations, quantiles)

Marginal densities

AGHQ is practically indistinguishable from MCMC and runs in milliseconds.
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AGHQ (•, —) with k ∈ {3, 5, 7} v.s. MCMC (�) for infectivity scale parameter.
Our theoretical convergence rate applies here!

Stochastic Convergence Rate

Suppose...

the base quadrature rule exactly integrates polynomials of degree ≤ 2k − 1
the model π(Y (n) | θ) satisfies standard regularity conditions.
Then,

π̃(Y (n)) = π(Y (n))
[
1 + OP

(
n−bk+2

3 c
)]

.

High-Dimensional Example

Zero-inflated binomial regression for spread of a tropical disease (loaloa).
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AGHQ posterior mean (a) suitability probabilities and (b) incidence rates.

A Bayesian version of this model has not previously been fit!

High-Dimensional Procedure

Even sparse rules are infeasible for large dimension p.
Instead, aghq implements the following procedure:
Split the parameter into a low-dim θ and high-dim W .
Apply AGHQ with k = 1 to

∫
π(W , θ, Y (n))dW .

Initially proposed by Tierney and Kadane (1986) to obtain π(θ | Y (n))
They ignore renormalization; we use another application of AGHQ

Apply a Gaussian approximation to π(W | θ, Y (n)).
Proposed by Stringer et al. (2021); builds on Rue et al. (2009)

Gauss Quadrature Rules

Gauss-Hermite (e.g., Davis and Rabinowitz, 1975)

Nodes are the zeroes of the kth Hermite polynomial

Weights defined to exactly integrate desired polynomials

In p dimensions, our theorem covers (for example)...
Product Rule: Gauss-Hermite using exponential in p points.
Smolyak Rule: Gauss-Hermite using polynomial in p points.

Any rule that satisfies the necessary exact integration applies.

Theoretical Considerations

High-Dimensional Convergence

Convergence of our AGHQ renormalization requires a misspecified

variant of our result.

In high dimensions (p ≈ n), the posterior may not concentrate and
the Gaussian adaptation may be unsuitable.

Previous Work

Kass et al. (1990) prove a convergence rate for k = 1.
We match their rate, and extend the proof to p > 1 dimensions.

Jin and Andersson (2020) study AGHQ in a restricted setting.

Their integrand cannot vary with n, and consequently the result
does not apply to likelihoods (or Bayesian inference).

They require properties to hold almost surely for all n, while we
use properties that hold in the probabilistic limit.


