

Stochastic Convergence Rates and Applications of Adaptive Quadrature in Bayesian Inference

VECTOR INSTITUTE

Contribution Summary

- First stochastic convergence rates of multi-point adaptive quadrature for Bayesian inference.
- Fast procedure for high-dimensional models combining multiand single-point adaptive quadrature techniques.
- Efficient and robust implementation of these methods in the aghq package, demonstrated on multiple challenging examples.

Approximate Bayesian Inference

Setup

Model: $\mathbf{Y}^{(n)} = (\mathbf{Y}_1, \dots, \mathbf{Y}_n) \sim \pi(\mathbf{Y}^{(n)} \mid \boldsymbol{\theta}^*), \, \boldsymbol{\theta}^* \in \Theta \subseteq \mathbb{R}^p$ Inference: $\pi(\boldsymbol{\theta} \mid \boldsymbol{Y}^{(n)}) = \pi(\boldsymbol{Y}^{(n)} \mid \boldsymbol{\theta})\pi(\boldsymbol{\theta})/\pi(\boldsymbol{Y}^{(n)})$

We want moments, quantiles, marginals, predictive distributions, etc.

MCMC: Draw samples from an *implicit* approximation of $\pi(\boldsymbol{\theta} \mid \boldsymbol{Y}^{(n)})$

- Easy to obtain summaries once you have samples.
- Theoretical guarantees exist.
- Can be (computationally) challenging, even for low-dimensions.

Quadrature: Numerically obtains an explicit approximation of $\pi(\mathbf{Y}^{(n)})$

- Software can make this very fast and stable.
- Theoretical guarantees for the stochastic setting are limited.

Adaptive Numerical Quadrature

Numerical Quadrature

Approximate an integral using

$$\int_{\Theta} f(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} \approx \sum_{\boldsymbol{z} \in \mathcal{Q}} f(\boldsymbol{z}) \boldsymbol{\omega}(\boldsymbol{z}).$$

Adaptive Quadrature

Recall $\pi(\mathbf{Y}^{(n)}) = \int \pi(\boldsymbol{\theta}, \mathbf{Y}^{(n)}) d\boldsymbol{\theta}$. The function $f_n(\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}, \boldsymbol{Y}^{(n)})$ changes with *n* through $\boldsymbol{Y}^{(n)}$.

Have to adapt the numerical quadrature rule to $\boldsymbol{Y}^{(n)}$.

Naylor and Smith (1982) propose... Mode: $\widehat{\boldsymbol{\theta}}_n = \arg \max_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{Y}^{(n)}, \boldsymbol{\theta})$ Curvature: $\widehat{L}_n = \text{lower Cholesky of } -\partial_{\theta}^2 \log \pi(\theta, \mathbf{Y}^{(n)})|_{\theta = \widehat{\theta}_n}$

$$ar{\pi}(oldsymbol{Y}^{(n)}) = |\widehat{oldsymbol{L}}_n| \sum_{oldsymbol{z} \in \mathcal{Q}} \pi(\widehat{oldsymbol{L}}_n oldsymbol{z} + \widehat{oldsymbol{ heta}}_n, oldsymbol{Y}^{(n)}) oldsymbol{\omega}(oldsymbol{z}).$$

Blair Bilodeau^{1,2} Alex Stringer^{1,3} Yanbo Tang^{1,2}

¹ University of Toronto² Vector Institute³ Center for Global Health Research, St. Michael's Hospital

AGHQ posterior mean (a) suitability probabilities and (b) incidence rates. A Bayesian version of this model has not previously been fit!

0.05

	High-Dimensional Procedure
ead.	Even sparse rules are infeasible for large dimension p . Instead, aghq implements the following procedure: • Split the parameter into a low-dim θ and high-dim W . • Apply AGHQ with $k = 1$ to $\int \pi(W, \theta, Y^{(n)}) dW$. • Initially proposed by Tierney and Kadane (1986) to obtain $\pi(\theta \theta)$ • They ignore renormalization; we use another application of AGB • Apply a Gaussian approximation to $\pi(W \theta, Y^{(n)})$.
seconds.	Proposed by Stringer et al. (2021); builds on Rue et al. (2009)
	Gauss Quadrature Rules
o.o20 o.o25	Gauss-Hermite (e.g., Davis and Rabinowitz, 1975)
	 Nodes are the zeroes of the kth Hermite polynomial Weights defined to exactly integrate desired polynomial
	In p dimensions, our theorem covers (for example) Product Rule: Gauss-Hermite using exponential in p point Smolyak Rule: Gauss-Hermite using polynomial in p point
	Any rule that satisfies the necessary exact integration app
$e \leq 2k-1$	Theoretical Considerations
	High-Dimensional Convergence
	 Convergence of our AGHQ renormalization requires a n variant of our result.
	In high dimensions ($p \approx n$), the posterior may not conce the Gaussian adaptation may be unsuitable.
	Previous Work
aloa).	Kass et al. (1990) prove a convergence rate for $k = 1$. We match their rate, and extend the proof to $p > 1$ dimer
1 0.6 0.5 0.4 0.3 0.25 0.2 0.2 0.15	 Jin and Andersson (2020) study AGHQ in a restricted set Their integrand cannot vary with n, and consequently the does not apply to likelihoods (or Bayesian inference). They require properties to hold almost surely for all n. w

use properties that hold in the probabilistic limit.

