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Approximate Bayesian Inference

Setup
Model: Y (n) = (Y1, . . . ,Yn) ∼ π(Y (n) | θ∗), θ∗ ∈ Θ ⊆ Rp

Inference: π(θ | Y (n)) = π(Y (n) | θ)π(θ)/π(Y (n))
We want moments, quantiles, marginals, predictive distributions, etc.

MCMC: Draw samples from an implicit approximation of π(θ | Y (n))
• Easy to obtain summaries once you have samples.
• Theoretical guarantees exist.
• Can be (computationally) challenging, even for low-dimensional models.

Quadrature: Numerical integration obtains an explicit approximation of π(Y (n))
• Can be very fast and stable, but the quadrature rule must adapt to the data.
• Theoretical guarantees for the stochastic setting are limited.

We provide...
Stochastic convergence rates of multi-point quadrature for Bayesian inference.
A fast procedure to use numerical quadrature for high-dimensional models.
An efficient and robust implementation of these methods in the aghq package.
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Adaptive Numerical Quadrature

Numerical Quadrature
Approximate an integral using∫

Θ
f(θ)dθ ≈

∑
z∈Q

f(z)ω(z).

Adaptive Quadrature
Recall π(Y (n)) =

∫
π(θ,Y (n))dθ.

The function fn(θ) = π(θ,Y (n)) changes with n through Y (n).

Have to adapt the numerical quadrature rule to Y (n).

Naylor and Smith (1982) propose...
Mode: θ̂n = arg maxθ∈Θ π(Y (n),θ)
Curvature: L̂n = lower Cholesky of −∂2

θ log π(θ,Y (n))|
θ=θ̂n

π̃(Y (n)) = |L̂n|
∑
z∈Q

π(L̂nz + θ̂n,Y
(n))ω(z).
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Convergence Rates

π̃(Y (n)) = |L̂n|
∑
z∈Q

π(L̂nz + θ̂n,Y
(n))ω(z).

Theorem (BST21)
Suppose...
• the base quadrature rule exactly integrates polynomials of degree ≤ 2k − 1
• the model π(Y (n) | θ) satisfies standard regularity conditions.

Then,
π̃(Y (n)) = π(Y (n))

[
1 +OP

(
n−b

k+2
3 c
)]
.

Gauss-Hermite Rule: in 1-dimension, defines (zi)i∈[k] and ω : R→ R+ that
exactly integrates polynomials of degree ≤ 2k − 1.
The adaptive version of the Gauss-Hermite rule (AGHQ) is implemented in aghq.

In p dimensions...
Product Rule: Exact integration using exponential in p points (grid).
Smolyak Rule: Exact integration using polynomial in p points (sparse grid).

(Heiss and Winschel, 2008)
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Low-Dimensional Example

• Spread of disease among a grid of n = 520 tomato plants.
• EpiILMCT: continuous-time, individual-levels models for disease spread.
• The aghq package provides:

• Optimization
• Quadrature
• Summary statistics (expectations, quantiles)
• Marginal densities

• AGHQ is practically indistinguishable from MCMC and runs in milliseconds.
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AGHQ (•, —) with k ∈ {3, 5, 7} v.s. MCMC (�) for infectivity scale parameter.
Our theoretical convergence rate applies here!
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High-Dimensional Example

Even sparse rules are infeasible for large dimension p.
Instead, aghq implements the following procedure:
• Split the parameter into a low-dimensional θ and high-dimensional W .
• Apply a Laplace approximation (AGHQ with k = 1) to

∫
π(W ,θ,Y (n))dW .

• Initially proposed by Tierney and Kadane (1986) to obtain π(θ | Y (n))
• They ignore renormalization; we use another application of AGHQ

• Apply a Gaussian approximation to π(W | θ,Y (n)).
• Proposed by Stringer et al. (2021); builds on Rue et al. (2009)

Example: Zero-inflated binomial regression for loaloa spread (Giorgi et al., 2018).
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AGHQ posterior mean (a) suitability probabilities and (b) incidence rates.
Open problem to develop theoretical guarantees for this procedure!
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Theoretical Details

High-Dimensional Convergence
• Convergence of our AGHQ renormalization requires a misspecified variant of

our result; see Kleijn and van der Vaart (2012) for BVM analogue.
• In high dimensions (p ≈ n), the posterior may not concentrate and the

Gaussian adaptation may be unsuitable. More structure required.

Previous Work
Kass et al. (1990) prove a convergence rate for k = 1 (a Laplace approximation).

We match their rate, and provide the first explicit proof for p > 1 dimensions.

Jin and Andersson (2020) study deterministic AGHQ in a restricted setting.
• Their integrand cannot vary with n, and consequently the result does not

apply to likelihoods (or Bayesian inference).
• They require properties to hold almost surely for all n, while we use

properties that hold in the probabilistic limit.
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Summary of Contributions

• The first stochastic convergence rates for approximate Bayesian inference via
multi-point adaptive quadrature.

• Our rate recovers the previous result for Laplace approximations.
• Our rate applies to usual AGHQ as well as sparse versions.
• Rate appears tight for some models, remains open to prove lower bounds.

• Using AGHQ within approximation methods for high-dimensional models.
• Applies to a broader class of models than R-INLA.
• We highlight remaining challenges to prove theory for high-dimensional AGHQ.

• A robust implementation of AGHQ in the aghq package, available on CRAN.
• Package: https://github.com/awstringer1/aghq
• Paper: https://arxiv.org/abs/2102.06801.
• Code: https://github.com/awstringer1/aghq-paper-code.
• Vignette: https://arxiv.org/abs/2101.04468.

https://github.com/awstringer1/aghq
https://arxiv.org/abs/2102.06801
https://github.com/awstringer1/aghq-paper-code
https://arxiv.org/abs/2101.04468
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