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Regression with Uncertainty

Observe: X1:n ∼ µ⊗n and Y1:n = Noise
[
f∗(X1:n)

]
.

Goal: Given a new X ∼ µ, predict Y .
Regression: Approximate E[Y | X] with f̂ : X → Y.
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Regression with Uncertainty

Observe: X1:n ∼ µ⊗n and Y1:n = Noise
[
f∗(X1:n)

]
.

Goal: Given a new X ∼ µ, predict Y .
Regression: Approximate E[Y | X] with f̂ : X → Y.

Idea: Approximate f∗(Y | X) with f̂ : X →M(Y) = {densities on Y}



Measuring Performance

For regression we could use square / absolute / classification loss...
...but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

`
(
f̂ , (X,Y )

)
= − log

(
f̂(Y | X)

)
.

This is just the negative log-likelihood of your predictive density.
Being confidently wrong is worse than being ambivalent

(once in a while).

Consider the simple case of estimating the probability of rain, p:
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Minimax Performance

If f∗(Y | X) can vary wildly in X, I can do arbitrarily bad in the tails.
I need to make some assumption about my data...
...but I want to know how this assumption might affect my predictive performance.

The Big Assumption
Suppose the data-generating f∗ : X →M(Y) is in some known set: f∗ ∈ F .
This is the classical statistics assumption: i.i.d. data with a well-specified model.

Minimax Risk

Rn(F) = inf
f̂

sup
µ

sup
f∗∈F

EX1:n,Y1:nEXKL
(
f∗(· | X) ‖ f̂n(· | X)

)
.

Best-case predictions against the worst-case data distribution,
in expectation over data of the accuracy in expectation over a new covariate.

We provide an explicit algorithm that achieves the inf within log factors.
This works for every F , and looks like a Bayesian mixture density.
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Examples of Rates (BFR21)

Truncated Generalized Linear Model
Y | X follows Exponential family distribution truncated to [−B,B].
Location parameter is a linear function of X in the unit ‖·‖2-ball on Rd.

Rn(F) . log(nB)√
n

.

VC-Type Classes (Solved open problem from ALT 2021)
X arbitrary, Y | X ∼ Bernoulli(p(X)),
where p(X) = a+ b I{X ∈ c} for some a, b > 0 and subset c ∈ C.

Rn(F) . VCdim(C) log(n)
n

.

Nonparametric Conditional Densities
Y | X has an α-Hölder continuous conditional density on X = [0, 1]d.

Rn(F) . n−
α
α+d log(n).

Our lower bounds match the polynomial dependence on n.
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Complexity of F

Well-specified is more reasonable for a complex F , but estimation will be harder.
What is the formal notion of complexity that determines the minimax rates?

Entropy measures how many functions are needed to discretely approximate F .

How should the notion of size be chosen?
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Existing Results

Nonparametric Regression
Minimax performance for regression with square loss is well-studied.
Rakhlin et al. (2017) define entropy HSq.Loss satisfying

HSq.Loss
n (F , εn) � nε2

n =⇒ RSq.Loss
n (F) � ε2

n.

This type of relationship is also classically known; it appears in LeCam (1973).
Problem #1: This entropy is for real-valued F , our regressors are function-valued!

Density Estimation
Joint density estimation (e.g., of p(X,Y )) is also well-studied.
Yang and Barron (1999) define a different entropy HJoint satisfying

HJoint
n (F , εn) � nε2

n =⇒ RJoint
n (F) � ε2

n.

Problem #2: We shouldn’t have to estimate the marginal distribution on X !
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Main Results

Theorem (BFR21)
We define a new notion of entropy H such that

Hn(F , εn) � nε2
n =⇒ Rn(F) � ε2

n

for conditional density estimation.

Highlights of what this means
a) We obtain the minimax rates (as a function of n) for all F simultaneously.
b) Existing joint density results require estimating the covariate distribution,
which we eliminate for conditional density estimation.
c) Our results allow for infinite dimensional and unbounded covariate spaces.
d) Our notion of entropy is data-dependent, which leads to an
implementable algorithm.
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