Minimax Rates for Conditional Density Estimation via Empirical Entropy

Blair Bilodeau¹

(joint work with Dylan J. Foster^2 and $\mathsf{Daniel}\ \mathsf{M}.\ \mathsf{Roy}^1$)

April 23, 2021

Statistical Sciences Research Day

¹University of Toronto and Vector Institute

²Massachusetts Institute of Technology

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \operatorname{Noise} \Big[f^*(X_{1:n}) \Big]$.

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \Big[f^*(X_{1:n}) \Big].$

 $\textbf{Goal:} \ \, \text{Given a new} \,\, X \sim \mu \text{, predict} \,\, Y.$

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \Big[f^*(X_{1:n}) \Big].$

Goal: Given a new $X \sim \mu$, predict Y.

Regression: Approximate $\mathbb{E}[Y \mid X]$ with $\hat{f}: \mathcal{X} \to \mathcal{Y}$.

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \left[f^*(X_{1:n}) \right]$.

Goal: Given a new $X \sim \mu$, predict Y.

Regression: Approximate $\mathbb{E}[Y \mid X]$ with $\hat{f}: \mathcal{X} \to \mathcal{Y}$.

Observe some data...

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \Big[f^*(X_{1:n}) \Big].$

 $\textbf{Goal:} \ \, \mathsf{Given} \ \, \mathsf{a} \ \, \mathsf{new} \, \, X \sim \mu \mathsf{, predict} \, \, Y.$

Regression: Approximate $\mathbb{E}[Y \mid X]$ with $\hat{f}: \mathcal{X} \to \mathcal{Y}$.

Draw your favourite curve...

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \Big[f^*(X_{1:n}) \Big].$

Goal: Given a new $X \sim \mu$, predict Y.

Regression: Approximate $\mathbb{E}[Y \mid X]$ with $\hat{f}: \mathcal{X} \to \mathcal{Y}$.

This curve works for lots of data...

Observe: $X_{1:n} \sim \mu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \left| f^*(X_{1:n}) \right|$.

 $\textbf{Goal:} \ \, \text{Given a new} \,\, X \sim \mu \text{, predict} \,\, Y.$

Regression: Approximate $\mathbb{E}[Y \mid X]$ with $\hat{f}: \mathcal{X} \to \mathcal{Y}$.

Idea: Approximate $f^*(Y \mid X)$ with $\hat{f}: \mathcal{X} \to \mathcal{M}(\mathcal{Y}) = \{\text{densities on } \mathcal{Y}\}$

For regression we could use square / absolute / classification loss...

For regression we could use square / absolute / classification loss... ...but now we want to capture the quality of our predictions in the tails.

For regression we could use square / absolute / classification loss...

 \dots but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

$$\ell(\hat{f}, (X, Y)) = -\log(\hat{f}(Y \mid X)).$$

For regression we could use square / absolute / classification loss...

...but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

$$\ell\Big(\hat{f},(X,Y)\Big) = -\log\Big(\hat{f}(Y\mid X)\Big).$$

This is just the negative log-likelihood of your predictive density.

For regression we could use square / absolute / classification loss...

...but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

$$\ell(\hat{f}, (X, Y)) = -\log(\hat{f}(Y \mid X)).$$

This is just the negative log-likelihood of your predictive density.

Being confidently wrong is worse than being ambivalent (once in a while).

For regression we could use square / absolute / classification loss...

...but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

$$\ell(\hat{f}, (X, Y)) = -\log(\hat{f}(Y \mid X)).$$

This is just the negative log-likelihood of your predictive density.

Being confidently wrong is worse than being ambivalent (once in a while).

Consider the simple case of estimating the probability of rain, p:

For regression we could use square / absolute / classification loss...

...but now we want to capture the quality of our predictions in the tails.

We use log loss to achieve this:

$$\ell(\hat{f}, (X, Y)) = -\log(\hat{f}(Y \mid X)).$$

This is just the negative log-likelihood of your predictive density.

Being confidently wrong is worse than being ambivalent (once in a while).

Consider the simple case of estimating the probability of rain, p:

If $f^*(Y\mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails.

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails. I need to make some assumption about my data...

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails.

I need to make some assumption about my data...

 \ldots but I want to know how this assumption might affect my predictive performance.

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails.

I need to make some assumption about my data...

 \ldots but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$.

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails.

I need to make some assumption about my data...

 \ldots but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$.

This is the classical statistics assumption: i.i.d. data with a well-specified model.

If $f^*(Y\mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails.

I need to make some assumption about my data...

...but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$. This is the classical statistics assumption: i.i.d. data with a well-specified model.

Minimax Risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{\mu} \sup_{f^* \in \mathcal{F}} \mathbb{E}_{X_{1:n},Y_{1:n}} \mathbb{E}_X \mathrm{KL}\Big(f^*(\cdot \mid X) \, \| \, \hat{f}_n(\cdot \mid X)\Big).$$

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails. I need to make some assumption about my data...

 \dots but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$. This is the classical statistics assumption: i.i.d. data with a well-specified model.

Minimax Risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{\mu} \sup_{f^* \in \mathcal{F}} \mathbb{E}_{X_{1:n}, Y_{1:n}} \mathbb{E}_X \mathrm{KL}\Big(f^*(\cdot \mid X) \, \| \, \hat{f}_n(\cdot \mid X)\Big).$$

Best-case predictions against the worst-case data distribution, in expectation over data of the accuracy in expectation over a new covariate.

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails. I need to make some assumption about my data... ... but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$. This is the classical statistics assumption: i.i.d. data with a well-specified model.

Minimax Risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{\mu} \sup_{f^* \in \mathcal{F}} \mathbb{E}_{X_{1:n}, Y_{1:n}} \mathbb{E}_X \mathrm{KL}\Big(f^*(\cdot \mid X) \, \| \, \hat{f}_n(\cdot \mid X)\Big).$$

Best-case predictions against the worst-case data distribution, in expectation over data of the accuracy in expectation over a new covariate.

We provide an explicit algorithm that achieves the \inf within \log factors. This works for every $\mathcal{F},$ and looks like a Bayesian mixture density.

If $f^*(Y \mid X)$ can vary wildly in X, I can do arbitrarily bad in the tails. I need to make some assumption about my data... ... but I want to know how this assumption might affect my predictive performance.

The Big Assumption

Suppose the data-generating $f^*: \mathcal{X} \to \mathcal{M}(\mathcal{Y})$ is in some known set: $f^* \in \mathcal{F}$. This is the classical statistics assumption: i.i.d. data with a well-specified model.

Minimax Risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}} \sup_{\mu} \sup_{f^* \in \mathcal{F}} \mathbb{E}_{X_{1:n}, Y_{1:n}} \mathbb{E}_X \mathrm{KL}\Big(f^*(\cdot \mid X) \, \| \, \hat{f}_n(\cdot \mid X)\Big).$$

Best-case predictions against the worst-case data distribution, in expectation over data of the accuracy in expectation over a new covariate.

We provide an explicit algorithm that achieves the \inf within \log factors. This works for every $\mathcal{F},$ and looks like a Bayesian mixture density.

Truncated Generalized Linear Model

 $Y\mid X$ follows Exponential family distribution truncated to [-B,B]. Location parameter is a linear function of X in the unit $\|\cdot\|_2$ -ball on $\mathbb{R}^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\log(nB)}{\sqrt{n}}.$$

Truncated Generalized Linear Model

 $Y\mid X \text{ follows Exponential family distribution truncated to } [-B,B].$ Location parameter is a linear function of X in the unit $\|\cdot\|_2$ -ball on \mathbb{R}^d .

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\log(nB)}{\sqrt{n}}.$$

VC-Type Classes (Solved open problem from ALT 2021)

$${\mathcal X}$$
 arbitrary, $Y\mid X\sim \mathrm{Bernoulli}(p(X))$,

where $p(X) = a + b \mathbb{I}\{X \in c\}$ for some a, b > 0 and subset $c \in \mathcal{C}$.

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\operatorname{VCdim}(\mathcal{C}) \log(n)}{n}.$$

Truncated Generalized Linear Model

 $Y\mid X \text{ follows Exponential family distribution truncated to } [-B,B].$ Location parameter is a linear function of X in the unit $\|\cdot\|_2$ -ball on \mathbb{R}^d .

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\log(nB)}{\sqrt{n}}.$$

VC-Type Classes (Solved open problem from ALT 2021)

 \mathcal{X} arbitrary, $Y \mid X \sim \operatorname{Bernoulli}(p(X))$,

where $p(X) = a + b \mathbb{I}\{X \in c\}$ for some a, b > 0 and subset $c \in \mathcal{C}$.

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\operatorname{VCdim}(\mathcal{C}) \log(n)}{n}.$$

Nonparametric Conditional Densities

 $Y\mid X$ has an lpha-Hölder continuous conditional density on $\mathcal{X}=[0,1]^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim n^{-\frac{\alpha}{\alpha+d}} \log(n).$$

Truncated Generalized Linear Model

 $Y\mid X$ follows Exponential family distribution truncated to [-B,B]. Location parameter is a linear function of X in the unit $\|\cdot\|_2$ -ball on $\mathbb{R}^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\log(nB)}{\sqrt{n}}.$$

VC-Type Classes (Solved open problem from ALT 2021)

 ${\mathcal X}$ arbitrary, $Y\mid X\sim \mathrm{Bernoulli}(p(X))$,

where $p(X) = a + b \mathbb{I}\{X \in c\}$ for some a, b > 0 and subset $c \in \mathcal{C}$.

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\operatorname{VCdim}(\mathcal{C}) \log(n)}{n}.$$

Nonparametric Conditional Densities

 $Y\mid X$ has an α -Hölder continuous conditional density on $\mathcal{X}=[0,1]^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim n^{-\frac{\alpha}{\alpha+d}} \log(n).$$

Our lower bounds match the polynomial dependence on n.

Truncated Generalized Linear Model

 $Y\mid X$ follows Exponential family distribution truncated to [-B,B]. Location parameter is a linear function of X in the unit $\|\cdot\|_2$ -ball on $\mathbb{R}^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\log(nB)}{\sqrt{n}}.$$

VC-Type Classes (Solved open problem from ALT 2021)

 ${\mathcal X}$ arbitrary, $Y\mid X\sim \mathrm{Bernoulli}(p(X))$,

where $p(X) = a + b \mathbb{I}\{X \in c\}$ for some a, b > 0 and subset $c \in \mathcal{C}$.

$$\mathcal{R}_n(\mathcal{F}) \lesssim \frac{\operatorname{VCdim}(\mathcal{C}) \log(n)}{n}.$$

Nonparametric Conditional Densities

 $Y\mid X$ has an α -Hölder continuous conditional density on $\mathcal{X}=[0,1]^d.$

$$\mathcal{R}_n(\mathcal{F}) \lesssim n^{-\frac{\alpha}{\alpha+d}} \log(n).$$

Our lower bounds match the polynomial dependence on n.

Complexity of \mathcal{F}

Complexity of \mathcal{F}

Well-specified is more reasonable for a complex $\ensuremath{\mathcal{F}},$ but estimation will be harder.

Complexity of \mathcal{F}

Well-specified is more reasonable for a complex \mathcal{F} , but estimation will be harder. What is the formal notion of complexity that determines the minimax rates?

Well-specified is more reasonable for a complex \mathcal{F} , but estimation will be harder. What is the formal notion of complexity that determines the minimax rates?

Entropy measures how many functions are needed to discretely approximate ${\cal F}.$

Well-specified is more reasonable for a complex \mathcal{F} , but estimation will be harder. What is the formal notion of complexity that determines the minimax rates? Entropy measures how many functions are needed to discretely approximate \mathcal{F} .

Well-specified is more reasonable for a complex \mathcal{F} , but estimation will be harder. What is the formal notion of complexity that determines the minimax rates? Entropy measures how many functions are needed to discretely approximate \mathcal{F} .

Well-specified is more reasonable for a complex \mathcal{F} , but estimation will be harder. What is the formal notion of complexity that determines the minimax rates?

Entropy measures how many functions are needed to discretely approximate \mathcal{F} .

How should the notion of size be chosen?

Nonparametric Regression

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are function-valued!

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are function-valued!

Density Estimation

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are function-valued!

Density Estimation

Joint density estimation (e.g., of p(X,Y)) is also well-studied.

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are function-valued!

Density Estimation

Joint density estimation (e.g., of p(X,Y)) is also well-studied.

Yang and Barron (1999) define a different entropy $\mathcal{H}^{\mathrm{Joint}}$ satisfying

$$\mathcal{H}_n^{\mathrm{Joint}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\mathrm{Joint}}(\mathcal{F}) \times \varepsilon_n^2.$$

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are $\mathit{function-valued}$!

Density Estimation

Joint density estimation (e.g., of p(X,Y)) is also well-studied.

Yang and Barron (1999) define a different entropy $\mathcal{H}^{\mathrm{Joint}}$ satisfying

$$\mathcal{H}_n^{\mathrm{Joint}}(\mathcal{F}, \varepsilon_n) \asymp n \varepsilon_n^2 \implies \mathcal{R}_n^{\mathrm{Joint}}(\mathcal{F}) \asymp \varepsilon_n^2.$$

Problem #2: We shouldn't have to estimate the marginal distribution on $\mathcal{X}!$

Nonparametric Regression

Minimax performance for regression with square loss is well-studied.

Rakhlin et al. (2017) define entropy $\mathcal{H}^{\mathrm{Sq.Loss}}$ satisfying

$$\mathcal{H}_n^{\text{Sq.Loss}}(\mathcal{F}, \varepsilon_n) \times n\varepsilon_n^2 \implies \mathcal{R}_n^{\text{Sq.Loss}}(\mathcal{F}) \times \varepsilon_n^2.$$

This type of relationship is also classically known; it appears in LeCam (1973).

Problem #1: This entropy is for real-valued \mathcal{F} , our regressors are $\mathit{function-valued}$!

Density Estimation

Joint density estimation (e.g., of p(X,Y)) is also well-studied.

Yang and Barron (1999) define a different entropy $\mathcal{H}^{\mathrm{Joint}}$ satisfying

$$\mathcal{H}_n^{\mathrm{Joint}}(\mathcal{F}, \varepsilon_n) \asymp n \varepsilon_n^2 \implies \mathcal{R}_n^{\mathrm{Joint}}(\mathcal{F}) \asymp \varepsilon_n^2.$$

Problem #2: We shouldn't have to estimate the marginal distribution on $\mathcal{X}!$

Theorem (BFR21)

We define a new notion of entropy ${\cal H}$ such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

Theorem (BFR21)

We define a new notion of entropy ${\cal H}$ such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

Theorem (BFR21)

We define a new notion of entropy H such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

Highlights of what this means

a) We obtain the minimax rates (as a function of n) for all ${\mathcal F}$ simultaneously.

Theorem (BFR21)

We define a new notion of entropy ${\cal H}$ such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

- a) We obtain the minimax rates (as a function of n) for all ${\mathcal F}$ simultaneously.
- b) Existing joint density results require estimating the covariate distribution, which we eliminate for conditional density estimation.

Theorem (BFR21)

We define a new notion of entropy H such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

- a) We obtain the minimax rates (as a function of n) for all ${\mathcal F}$ simultaneously.
- b) Existing joint density results require estimating the covariate distribution, which we eliminate for conditional density estimation.
- c) Our results allow for infinite dimensional and unbounded covariate spaces.

Theorem (BFR21)

We define a new notion of entropy H such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

- a) We obtain the minimax rates (as a function of n) for all $\mathcal F$ simultaneously.
- b) Existing joint density results require estimating the covariate distribution, which we eliminate for conditional density estimation.
- c) Our results allow for infinite dimensional and unbounded covariate spaces.
- d) Our notion of entropy is data-dependent, which leads to an implementable algorithm.

Theorem (BFR21)

We define a new notion of entropy H such that

$$\mathcal{H}_n(\mathcal{F}, \varepsilon_n) \asymp n\varepsilon_n^2 \implies \mathcal{R}_n(\mathcal{F}) \asymp \varepsilon_n^2$$

for conditional density estimation.

- a) We obtain the minimax rates (as a function of n) for all $\mathcal F$ simultaneously.
- b) Existing joint density results require estimating the covariate distribution, which we eliminate for conditional density estimation.
- c) Our results allow for infinite dimensional and unbounded covariate spaces.
- d) Our notion of entropy is data-dependent, which leads to an implementable algorithm.