
Tight Bounds on Minimax Regret under

Logarithmic Loss via Self-Concordance

Blair Bilodeau1,2,3, Dylan J. Foster4, and Daniel M. Roy1,2,3

Presented at the 2020 International Conference on Machine Learning

1Department of Statistical Sciences, University of Toronto
2Vector Institute
3Institute for Advanced Study
4Institute for Foundations of Data Science, Massachusetts Institute of Technology

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image.

• Assign a probability to whether the image is adversarially generated.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image.

• Assign a probability to whether the image is adversarially generated.

• Observe the true label.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image.

• Assign a probability to whether the image is adversarially generated.

• Observe the true label.

• Incur penalty based on prediction and observation.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability to whether the image is adversarially generated.

• Observe the true label.

• Incur penalty based on prediction and observation.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label.

• Incur penalty based on prediction and observation.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty based on prediction and observation.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Notice that `log equals the negative log likelihood of yt under the model p̂t.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Notice that `log equals the negative log likelihood of yt under the model p̂t.

Challenges

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Notice that `log equals the negative log likelihood of yt under the model p̂t.

Challenges

• We do not rely on data-generating assumptions.

Contextual Online Learning with Log Loss

Example: Image Identification

For rounds t = 1, . . . , n:

• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Notice that `log equals the negative log likelihood of yt under the model p̂t.

Challenges

• We do not rely on data-generating assumptions.

• `log is neither bounded nor Lipschitz.

Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible.

If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class F ⊆ {f : X → [0, 1]}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations.

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

This quantity depends on

• p̂: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.

Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible.

If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class F ⊆ {f : X → [0, 1]}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations.

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

This quantity depends on

• p̂: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.

Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible.

If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class F ⊆ {f : X → [0, 1]}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations.

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

This quantity depends on

• p̂: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.

Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible.

If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class F ⊆ {f : X → [0, 1]}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations.

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

This quantity depends on

• p̂: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.

Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible.

If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class F ⊆ {f : X → [0, 1]}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations.

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

This quantity depends on

• p̂: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

The first context is observed.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

The player makes their prediction.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

The adversary plays an observation.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

This repeats for all n rounds.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

This repeats for all n rounds.

Minimax Regret

Regret: Rn(p̂;F , x, y) =

n∑
t=1

`log(p̂t, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt).

Minimax regret: an algorithm-free quantity on worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

Interpretation: The experts F are minimax online learnable if Rn(F) < o(n).

• slow rate: Rn(F) = Θ(
√
n)

• fast rate: Rn(F) ≤ O(log(n))

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class F .

Covering Numbers

• Define a notion of distance between experts, d(f, g).

• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

A uniform covering may be infinite for large expert classes.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

Key characteristics of sequential covering:

• Only need to cover the expert predictions on the actual observed contexts.

• The cover respects the sequential dependency of the online game.

Rn(F) = sup
x1

inf
p̂1

sup
y1

sup
x2

inf
p̂2

sup
y2

· · · sup
xn

inf
p̂n

sup
yn

Rn(p̂;F , x, y).

We encode the sequential nature of xt and yt using binary trees:

Sequential Covering

A class of trees V sequentially covers F at margin γ on context tree x if:

sup
f∈F

sup
y∈{0,1}n

inf
v∈V

sup
t∈[n]
|f(xt(y))− vt(y)| ≤ γ.

Observations

• V is chosen after observing x, so it doesn’t have to apply to all of X .

• v ∈ V is chosen with knowledge of y, the actual path of observations.

Definitions

• The size of the smallest such V for x is N∞ (F ◦ x, γ).

• Sequential entropy for n rounds is H∞ (F , γ, n) = supx log (N∞ (F ◦ x, γ)).

Sequential Covering

A class of trees V sequentially covers F at margin γ on context tree x if:

sup
f∈F

sup
y∈{0,1}n

inf
v∈V

sup
t∈[n]
|f(xt(y))− vt(y)| ≤ γ.

Observations

• V is chosen after observing x, so it doesn’t have to apply to all of X .

• v ∈ V is chosen with knowledge of y, the actual path of observations.

Definitions

• The size of the smallest such V for x is N∞ (F ◦ x, γ).

• Sequential entropy for n rounds is H∞ (F , γ, n) = supx log (N∞ (F ◦ x, γ)).

Sequential Covering

A class of trees V sequentially covers F at margin γ on context tree x if:

sup
f∈F

sup
y∈{0,1}n

inf
v∈V

sup
t∈[n]
|f(xt(y))− vt(y)| ≤ γ.

Observations

• V is chosen after observing x, so it doesn’t have to apply to all of X .

• v ∈ V is chosen with knowledge of y, the actual path of observations.

Definitions

• The size of the smallest such V for x is N∞ (F ◦ x, γ).

• Sequential entropy for n rounds is H∞ (F , γ, n) = supx log (N∞ (F ◦ x, γ)).

Improved Minimax Bounds

Theorem (BFR ’20)

There exists c > 0 such that for all F ,

Rn(F) ≤ inf
γ>0

{
4nγ + cH∞ (F , γ, n)

}
.

Upper Bound (Computation)

If H∞ (F , γ, n) = Θ(γ−p) for p > 0,

Rn(F) ≤ O(n
p

p+1).

Theorem (BFR ’20)

If p ∈ N, there exists an F with H∞ (F , γ, n) = Θ(γ−p) and

Rn(F) ≥ Ω(n
p

p+1).

Improved Minimax Bounds

Theorem (BFR ’20)

There exists c > 0 such that for all F ,

Rn(F) ≤ inf
γ>0

{
4nγ + cH∞ (F , γ, n)

}
.

Upper Bound (Computation)

If H∞ (F , γ, n) = Θ(γ−p) for p > 0,

Rn(F) ≤ O(n
p

p+1).

Theorem (BFR ’20)

If p ∈ N, there exists an F with H∞ (F , γ, n) = Θ(γ−p) and

Rn(F) ≥ Ω(n
p

p+1).

Improved Minimax Bounds

Theorem (BFR ’20)

There exists c > 0 such that for all F ,

Rn(F) ≤ inf
γ>0

{
4nγ + cH∞ (F , γ, n)

}
.

Upper Bound (Computation)

If H∞ (F , γ, n) = Θ(γ−p) for p > 0,

Rn(F) ≤ O(n
p

p+1).

Theorem (BFR ’20)

If p ∈ N, there exists an F with H∞ (F , γ, n) = Θ(γ−p) and

Rn(F) ≥ Ω(n
p

p+1).

Applications

• 1-Lipschitz:

F = {f | f : [0, 1]p → [0, 1], |f(x)− f(y)| ≤ ‖x− y‖ ∀x, y ∈ [0, 1]p}.

H∞ (F , γ, n) = Θ
(
γ−p

)
.

We have matching upper and lower bounds for this class, so:

Rn(F) = Θ(n
p

p+1).

Applications

• 1-Lipschitz:

F = {f | f : [0, 1]p → [0, 1], |f(x)− f(y)| ≤ ‖x− y‖ ∀x, y ∈ [0, 1]p}.

H∞ (F , γ, n) = Θ
(
γ−p

)
.

We have matching upper and lower bounds for this class, so:

Rn(F) = Θ(n
p

p+1).

Applications

• 1-Lipschitz:

F = {f | f : [0, 1]p → [0, 1], |f(x)− f(y)| ≤ ‖x− y‖ ∀x, y ∈ [0, 1]p}.

H∞ (F , γ, n) = Θ
(
γ−p

)
.

We have matching upper and lower bounds for this class, so:

Rn(F) = Θ(n
p

p+1).

Applications

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

H∞ (F , γ, n) = Θ̃
(
γ−2

)
.

Our upper bound prescribes:

Rn(F) ≤ Õ(n2/3).

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

Rn(F) ≤ Õ(
√
n).

Our upper bound cannot be improved, so the minimax regret under log

loss cannot be characterized solely by sequential entropy.

Applications

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

H∞ (F , γ, n) = Θ̃
(
γ−2

)
.

Our upper bound prescribes:

Rn(F) ≤ Õ(n2/3).

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

Rn(F) ≤ Õ(
√
n).

Our upper bound cannot be improved, so the minimax regret under log

loss cannot be characterized solely by sequential entropy.

Applications

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

H∞ (F , γ, n) = Θ̃
(
γ−2

)
.

Our upper bound prescribes:

Rn(F) ≤ Õ(n2/3).

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

Rn(F) ≤ Õ(
√
n).

Our upper bound cannot be improved, so the minimax regret under log

loss cannot be characterized solely by sequential entropy.

Applications

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

H∞ (F , γ, n) = Θ̃
(
γ−2

)
.

Our upper bound prescribes:

Rn(F) ≤ Õ(n2/3).

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

Rn(F) ≤ Õ(
√
n).

Our upper bound cannot be improved, so the minimax regret under log

loss cannot be characterized solely by sequential entropy.

