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• Receive an image. Context xt ∈ X
• Assign a probability. Prediction p̂t ∈ [0, 1]

• Observe the true label. Observation yt ∈ {0, 1}
• Incur penalty. Loss `log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(p̂t)

Notice that `log equals the negative log likelihood of yt under the model p̂t.

Challenges

• We do not rely on data-generating assumptions.

• `log is neither bounded nor Lipschitz.
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Summary of Results

We control the minimax regret using the sequential entropy of the experts F .

• Minimax regret: the smallest possible regret under worst-case observations.

• Sequential entropy: a data-dependent complexity measure for F .

Contributions

• Improved upper bound for expert classes with polynomial sequential entropy.

• Novel proof technique that exploits the curvature of log loss to avoid a key

“truncation step” used by previous works.

• Resolve the minimax regret with log loss for Lipschitz experts on [0, 1]p with

matching lower bounds.

• Conclude the minimax regret with log loss cannot be completely

characterized using sequential entropy.
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• Find the smallest G ⊆ F so that for each f ∈ F , there is a g ∈ G with

d(f, g) ≤ γ.

• The covering number for F is |G|, and the entropy is log(|G|).

Uniform Covering

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|
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Sequential Covering

A class of trees V sequentially covers F at margin γ on context tree x if:

sup
f∈F

sup
y∈{0,1}n

inf
v∈V

sup
t∈[n]
|f(xt(y))− vt(y)| ≤ γ.

Observations

• V is chosen after observing x, so it doesn’t have to apply to all of X .

• v ∈ V is chosen with knowledge of y, the actual path of observations.

Definitions

• The size of the smallest such V for x is N∞ (F ◦ x, γ).

• Sequential entropy for n rounds is H∞ (F , γ, n) = supx log (N∞ (F ◦ x, γ)).
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Improved Minimax Bounds

Theorem (BFR ’20)

There exists c > 0 such that for all F ,

Rn(F) ≤ inf
γ>0

{
4nγ + cH∞ (F , γ, n)

}
.

Upper Bound (Computation)

If H∞ (F , γ, n) = Θ(γ−p) for p > 0,

Rn(F) ≤ O(n
p

p+1 ).

Theorem (BFR ’20)

If p ∈ N, there exists an F with H∞ (F , γ, n) = Θ(γ−p) and

Rn(F) ≥ Ω(n
p

p+1 ).
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Applications

• 1-Lipschitz:

F = {f | f : [0, 1]p → [0, 1], |f(x)− f(y)| ≤ ‖x− y‖ ∀x, y ∈ [0, 1]p}.

H∞ (F , γ, n) = Θ
(
γ−p

)
.

We have matching upper and lower bounds for this class, so:

Rn(F) = Θ(n
p

p+1 ).
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Applications

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

H∞ (F , γ, n) = Θ̃
(
γ−2

)
.

Our upper bound prescribes:

Rn(F) ≤ Õ(n2/3).

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

Rn(F) ≤ Õ(
√
n).

Our upper bound cannot be improved, so the minimax regret under log

loss cannot be characterized solely by sequential entropy.
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