Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Blair Bilodeau1,2,3, Dylan J. Foster4, and Daniel M. Roy1,2,3
Presented at the 2020 International Conference on Machine Learning

1Department of Statistical Sciences, University of Toronto
2Vector Institute
3Institute for Advanced Study
4Institute for Foundations of Data Science, Massachusetts Institute of Technology
Example: Image Identification

For rounds $t = 1, \ldots, n$:
Example: Image Identification

For rounds $t = 1, \ldots, n$:

- Receive an image.
Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image.
- Assign a probability to whether the image is adversarially generated.
Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image.
- Assign a probability to whether the image is adversarially generated.
- Observe the true label.
Contextual Online Learning with Log Loss

Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image.
- Assign a probability to whether the image is adversarially generated.
- Observe the true label.
- Incur penalty based on prediction and observation.
Contextual Online Learning with Log Loss

Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image. Context $x_t \in \mathcal{X}$
- Assign a probability to whether the image is adversarially generated.
- Observe the true label.
- Incur penalty based on prediction and observation.
Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image. Context $x_t \in X$
- Assign a probability. Prediction $\hat{p}_t \in [0, 1]$
- Observe the true label.
- Incur penalty based on prediction and observation.
Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image. **Context** $x_t \in X$
- Assign a probability. **Prediction** $\hat{p}_t \in [0, 1]$
- Observe the true label. **Observation** $y_t \in \{0, 1\}$
- Incur penalty based on prediction and observation.
Contextual Online Learning with Log Loss

Example: Image Identification

For rounds $t = 1, \ldots, n$:

- Receive an image. **Context** $x_t \in \mathcal{X}$
- Assign a probability. **Prediction** $\hat{p}_t \in [0, 1]$
- Observe the true label. **Observation** $y_t \in \{0, 1\}$
- Incur penalty. **Loss** $\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(\hat{p}_t)$
Example: Image Identification

For rounds $t = 1, \ldots, n$:

- Receive an image. Context $x_t \in \mathcal{X}$
- Assign a probability. Prediction $\hat{p}_t \in [0, 1]$
- Observe the true label. Observation $y_t \in \{0, 1\}$
- Incur penalty. Loss $\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(\hat{p}_t)$

Notice that ℓ_{\log} equals the negative log likelihood of y_t under the model \hat{p}_t.
Example: Image Identification

For rounds $t = 1, \ldots, n$:

- Receive an image. Context $x_t \in \mathcal{X}$
- Assign a probability. Prediction $\hat{p}_t \in [0, 1]$
- Observe the true label. Observation $y_t \in \{0, 1\}$
- Incur penalty. Loss $\ell_{\text{log}}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(\hat{p}_t)$

Notice that ℓ_{log} equals the negative log likelihood of y_t under the model \hat{p}_t.

Challenges
Example: Image Identification

For rounds $t = 1, \ldots, n$:

- Receive an image. **Context** $x_t \in \mathcal{X}$
- Assign a probability. **Prediction** $\hat{p}_t \in [0, 1]$
- Observe the true label. **Observation** $y_t \in \{0, 1\}$
- Incur penalty. **Loss** $\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(\hat{p}_t)$

Notice that ℓ_{\log} equals the negative log likelihood of y_t under the model \hat{p}_t.

Challenges

- We do not rely on data-generating assumptions.
Example: Image Identification
For rounds $t = 1, \ldots, n$:

- Receive an image. Context $x_t \in \mathcal{X}$
- Assign a probability. Prediction $\hat{p}_t \in [0, 1]$
- Observe the true label. Observation $y_t \in \{0, 1\}$
- Incur penalty. Loss $\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(\hat{p}_t)$

Notice that ℓ_{\log} equals the negative log likelihood of y_t under the model \hat{p}_t.

Challenges

- We do not rely on data-generating assumptions.
- ℓ_{\log} is neither bounded nor Lipschitz.
Without model assumptions, guaranteed small loss on predictions is impossible.
Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible. If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

• Relative to a class $F \subseteq \{ f : X \to [0, 1] \}$, consisting of experts $f \in F$.

• Compete against the optimal $f \in F$ on the actual sequence of observations.

Regret:

$$R_n(\hat{p}; F, x, y) = \sum_{t=1}^{n} \ell \log(\hat{p}_t, y_t) - \inf_{f \in F} \sum_{t=1}^{n} \ell \log(f(x_t), y_t).$$

This quantity depends on

• \hat{p}: Player predictions,
• F: Expert class,
• x: Observed contexts,
• y: Observed data points.
Without model assumptions, guaranteed small loss on predictions is impossible. If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

- **Relative** to a class $\mathcal{F} \subseteq \{f : \mathcal{X} \to [0, 1]\}$, consisting of experts $f \in \mathcal{F}$.
- Compete against the optimal $f \in \mathcal{F}$ on the actual sequence of observations.
Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible. If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

- Relative to a class $\mathcal{F} \subseteq \{f : \mathcal{X} \rightarrow [0,1]\}$, consisting of experts $f \in \mathcal{F}$.
- Compete against the optimal $f \in \mathcal{F}$ on the actual sequence of observations.

$$
\text{Regret: } R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t).
$$
Measuring Performance with Regret

Without model assumptions, guaranteed small loss on predictions is impossible. If I can’t promise about the future, can I say something about the past?

Consider a relative notion of performance in hindsight.

- Relative to a class $\mathcal{F} \subseteq \{f : \mathcal{X} \to [0, 1]\}$, consisting of experts $f \in \mathcal{F}$.
- Compete against the optimal $f \in \mathcal{F}$ on the actual sequence of observations.

Regret:
\[
R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t).
\]

This quantity depends on

- \hat{p}: Player predictions,
- \mathcal{F}: Expert class,
- x: Observed contexts,
- y: Observed data points.
Summary of Results

We control the minimax regret using the sequential entropy of the experts \mathcal{F}.
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \mathcal{F}.

- **Minimax regret**: the *smallest possible* regret under *worst-case* observations.
- **Sequential entropy**: a *data-dependent complexity measure* for \mathcal{F}.
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \mathcal{F}.

- **Minimax regret**: the *smallest possible* regret under *worst-case* observations.
- **Sequential entropy**: a *data-dependent complexity measure* for \mathcal{F}.

Contributions
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \mathcal{F}.

- **Minimax regret**: the *smallest possible* regret under *worst-case* observations.
- **Sequential entropy**: a *data-dependent complexity measure* for \mathcal{F}.

Contributions

- Improved upper bound for expert classes with polynomial sequential entropy.
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \mathcal{F}.

- **Minimax regret**: the *smallest possible* regret under *worst-case* observations.
- **Sequential entropy**: a *data-dependent complexity measure* for \mathcal{F}.

Contributions

- Improved upper bound for expert classes with polynomial sequential entropy.
- Novel proof technique that exploits the curvature of log loss to avoid a key “truncation step” used by previous works.
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \(\mathcal{F} \).

- **Minimax regret**: the *smallest possible* regret under *worst-case* observations.
- **Sequential entropy**: a *data-dependent complexity measure* for \(\mathcal{F} \).

Contributions

- Improved upper bound for expert classes with polynomial sequential entropy.
- Novel proof technique that exploits the curvature of log loss to avoid a key “truncation step” used by previous works.
- Resolve the minimax regret with log loss for Lipschitz experts on \([0, 1]^p\) with matching lower bounds.
Summary of Results

We control the **minimax regret** using the **sequential entropy** of the experts \mathcal{F}.

- **Minimax regret**: the _smallest possible_ regret under _worst-case_ observations.
- **Sequential entropy**: a _data-dependent complexity measure_ for \mathcal{F}.

Contributions

- Improved upper bound for expert classes with polynomial sequential entropy.
- Novel proof technique that exploits the curvature of log loss to avoid a key “truncation step” used by previous works.
- Resolve the minimax regret with log loss for Lipschitz experts on $[0, 1]^p$ with matching lower bounds.
- Conclude the minimax regret with log loss cannot be completely characterized using sequential entropy.
Minimax Regret

Regret: \[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t). \]

Minimax regret: an algorithm-free quantity on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]
Minimax Regret

Regret: \[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_t \log(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_t \log(f(x_t), y_t). \]

Minimax regret: an algorithm-free quantity on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

The first context is observed.
Minimax Regret

Regret: \[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t). \]

Minimax regret: an \textbf{algorithm-free quantity} on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

The player makes their prediction.
Minimax Regret

Regret: \[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_\text{log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_\text{log}(f(x_t), y_t). \]

Minimax regret: an algorithm-free quantity on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

The adversary plays an observation.
Minimax Regret

Regret: \[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t). \]

Minimax regret: an \textbf{algorithm-free quantity} on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

This repeats for all \(n \) rounds.
Minimax Regret

Regret:
\[R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t). \]

Minimax regret: an algorithm-free quantity on worst-case observations.

\[R_n(\mathcal{F}) = \sup x_1 \inf \hat{p}_1 \sup y_1 \sup x_2 \inf \hat{p}_2 \sup y_2 \cdots \sup x_n \inf \hat{p}_n \sup y_n R_n(\hat{p}; \mathcal{F}, x, y). \]

This repeats for all \(n \) rounds.
Minimax Regret

Regret: \(R_n(\hat{p}; \mathcal{F}, x, y) = \sum_{t=1}^{n} \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell_{\log}(f(x_t), y_t). \)

Minimax regret: an algorithm-free quantity on worst-case observations.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

Interpretation: The experts \(\mathcal{F} \) are minimax online learnable if \(R_n(\mathcal{F}) < o(n) \).

- slow rate: \(R_n(\mathcal{F}) = \Theta(\sqrt{n}) \)
- fast rate: \(R_n(\mathcal{F}) \leq O(\log(n)) \)
Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class \mathcal{F}.

- Define a notion of distance between experts, $d(f,g)$.
- Find the smallest $G \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in G$ with $d(f,g) \leq \gamma$.
- The covering number for \mathcal{F} is $|G|$, and the entropy is $\log(|G|)$.

Uniform Covering

$d(f,g) = \sup_{x \in X} \sup_{y \in \{0,1\}} |\ell \log(f(x),y) - \ell \log(g(x),y)|$

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Covering Numbers

Goal: Obtain regret bounds using a notion of *complexity* of the expert class \mathcal{F}.

Covering Numbers

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Covering Numbers

Goal: Obtain regret bounds using a notion of *complexity* of the expert class \mathcal{F}.

Covering Numbers
- Define a notion of distance between experts, $d(f, g)$.
- Find the smallest $G \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in G$ with $d(f, g) \leq \gamma$.
- The covering number for \mathcal{F} is $|G|$, and the entropy is $\log(|G|)$.

Uniform Covering

\[
 d(f, g) = \sup_{x} \sup_{y \in \{0, 1\}} |\ell \log(f(x), y) - \ell \log(g(x), y)|
\]

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Goal: Obtain regret bounds using a notion of complexity of the expert class \(\mathcal{F} \).

Covering Numbers

- Define a notion of distance between experts, \(d(f, g) \).
- Find the smallest \(G \subseteq \mathcal{F} \) so that for each \(f \in \mathcal{F} \), there is a \(g \in G \) with \(d(f, g) \leq \gamma \).

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Covering Numbers

Goal: Obtain regret bounds using a notion of *complexity* of the expert class \mathcal{F}.

Covering Numbers

- Define a notion of distance between experts, $d(f, g)$.
- Find the *smallest* $\mathcal{G} \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in \mathcal{G}$ with $d(f, g) \leq \gamma$.
- The covering number for \mathcal{F} is $|\mathcal{G}|$, and the *entropy* is $\log(|\mathcal{G}|)$.

Uniform Covering

$d(f, g) = \sup_x \sup_{y \in \{0, 1\}} |\ell \log(f(x), y) - \ell \log(g(x), y)|$.

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Goal: Obtain regret bounds using a notion of *complexity* of the expert class \mathcal{F}.

Covering Numbers

- Define a notion of distance between experts, $d(f, g)$.
- Find the smallest $\mathcal{G} \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in \mathcal{G}$ with $d(f, g) \leq \gamma$.
- The covering number for \mathcal{F} is $|\mathcal{G}|$, and the *entropy* is $\log(|\mathcal{G}|)$.

Uniform Covering

$$d(f, g) = \sup_{x \in X} \sup_{y \in \{0,1\}} |\ell_{\log}(f(x), y) - \ell_{\log}(g(x), y)|$$

A uniform covering may be infinite for large expert classes. Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Goal: Obtain regret bounds using a notion of *complexity* of the expert class \mathcal{F}.

Covering Numbers

- Define a notion of distance between experts, $d(f, g)$.
- Find the *smallest* $\mathcal{G} \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in \mathcal{G}$ with $d(f, g) \leq \gamma$.
- The covering number for \mathcal{F} is $|\mathcal{G}|$, and the *entropy* is $\log(|\mathcal{G}|)$.

Uniform Covering

$$d(f, g) = \sup_{x \in \mathcal{X}} \sup_{y \in \{0, 1\}} |\ell_{\log}(f(x), y) - \ell_{\log}(g(x), y)|$$

A uniform covering may be infinite for large expert classes.
Covering Numbers

Goal: Obtain regret bounds using a notion of complexity of the expert class \mathcal{F}.

Covering Numbers

- Define a notion of distance between experts, $d(f, g)$.
- Find the smallest $\mathcal{G} \subseteq \mathcal{F}$ so that for each $f \in \mathcal{F}$, there is a $g \in \mathcal{G}$ with $d(f, g) \leq \gamma$.
- The covering number for \mathcal{F} is $|\mathcal{G}|$, and the entropy is $\log(|\mathcal{G}|)$.

Uniform Covering

$$d(f, g) = \sup_{x \in \mathcal{X}} \sup_{y \in \{0, 1\}} |\ell_{\log}(f(x), y) - \ell_{\log}(g(x), y)|$$

A uniform covering may be infinite for large expert classes.
Instead, we use sequential covering from Rakhlin and Sridharan (2014).
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[R_n(F) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} R_n(\hat{p}; F, x, y) \]
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[
R_n(F) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; F, x, y).
\]

We encode the sequential nature of \(x_t\) and \(y_t\) using **binary trees**:
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[
R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y).
\]

We encode the sequential nature of \(x_t\) and \(y_t\) using **binary trees**:

```
   _
  / \
/    \
```

\(x_t\)
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

We encode the sequential nature of \(x_t \) and \(y_t \) using **binary trees:**
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[R_n(F) = \sup_x \inf_{y} \sup_{\hat{p}_1} \inf_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; F, x, y). \]

We encode the sequential nature of \(x_t \) and \(y_t \) using **binary trees**:
Sequential Covering

Key characteristics of sequential covering:

- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[
R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y).
\]

We encode the sequential nature of \(x_t\) and \(y_t\) using **binary trees**:
Sequential Covering

Key characteristics of sequential covering:
- Only need to cover the expert predictions on the actual observed contexts.
- The cover respects the sequential dependency of the online game.

\[R_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{p}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{p}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{p}_n} \sup_{y_n} R_n(\hat{p}; \mathcal{F}, x, y). \]

We encode the sequential nature of \(x_t \) and \(y_t \) using **binary trees:**
A class of trees V sequentially covers \mathcal{F} at margin γ on context tree x if:

$$\sup_{f \in \mathcal{F}} \sup_{y \in \{0,1\}^n} \inf_{v \in V} \sup_{t \in [n]} |f(x_t(y)) - v_t(y)| \leq \gamma.$$
A class of trees V sequentially covers \mathcal{F} at margin γ on context tree \mathbf{x} if:

$$\sup_{f \in \mathcal{F}} \sup_{y \in \{0,1\}^n} \inf_{v \in V} \sup_{t \in [n]} |f(x_t(y)) - v_t(y)| \leq \gamma.$$

Observations

- V is chosen after observing \mathbf{x}, so it doesn’t have to apply to all of \mathcal{X}.
- $v \in V$ is chosen with knowledge of \mathbf{y}, the actual path of observations.
Sequential Covering

A class of trees V sequentially covers \mathcal{F} at margin γ on context tree \mathbf{x} if:

$$
\sup_{f \in \mathcal{F}} \sup_{y \in \{0,1\}^n} \inf_{v \in V} \sup_{t \in [n]} |f(x_t(y)) - v_t(y)| \leq \gamma.
$$

Observations

- V is chosen after observing \mathbf{x}, so it doesn’t have to apply to all of \mathcal{X}.
- $v \in V$ is chosen with knowledge of \mathbf{y}, the actual path of observations.

Definitions

- The size of the smallest such V for \mathbf{x} is $N_\infty (\mathcal{F} \circ \mathbf{x}, \gamma)$.
- *Sequential entropy* for n rounds is $H_\infty (\mathcal{F}, \gamma, n) = \sup_{\mathbf{x}} \log (N_\infty (\mathcal{F} \circ \mathbf{x}, \gamma))$.
Improved Minimax Bounds

Theorem (BFR '20)

There exists $c > 0$ such that for all \mathcal{F},

$$R_n(\mathcal{F}) \leq \inf_{\gamma > 0} \left\{ 4n\gamma + c \mathcal{H}_\infty (\mathcal{F}, \gamma, n) \right\}.$$
Improved Minimax Bounds

Theorem (BFR ’20)

There exists $c > 0$ such that for all \mathcal{F},

$$R_n(\mathcal{F}) \leq \inf_{\gamma > 0} \left\{ 4n\gamma + c \mathcal{H}_\infty(\mathcal{F}, \gamma, n) \right\}.$$

Upper Bound (Computation)

If $\mathcal{H}_\infty(\mathcal{F}, \gamma, n) = \Theta(\gamma^{-p})$ for $p > 0$,

$$R_n(\mathcal{F}) \leq O(n^{\frac{p}{p+1}}).$$
Improved Minimax Bounds

Theorem (BFR ’20)

There exists $c > 0$ such that for all \mathcal{F},

$$R_n(\mathcal{F}) \leq \inf_{\gamma > 0} \left\{ 4n\gamma + c \mathcal{H}_\infty (\mathcal{F}, \gamma, n) \right\}.$$

Upper Bound (Computation)

If $\mathcal{H}_\infty (\mathcal{F}, \gamma, n) = \Theta(\gamma^{-p})$ for $p > 0$,

$$R_n(\mathcal{F}) \leq O(n^{p/p+1}).$$

Theorem (BFR ’20)

If $p \in \mathbb{N}$, there exists an \mathcal{F} with $\mathcal{H}_\infty (\mathcal{F}, \gamma, n) = \Theta(\gamma^{-p})$ and

$$R_n(\mathcal{F}) \geq \Omega(n^{p/p+1}).$$
Applications

• 1-Lipschitz: $F = \{ f : [0, 1] \to [0, 1], |f(x) - f(y)| \leq \|x - y\| \; \forall x, y \in [0, 1] \}$.

$H^\infty(F, \gamma, n) = \Theta(\gamma - p)$.

We have matching upper and lower bounds for this class, so: $R_n(F) = \Theta(n^{p+1})$.
Applications

• 1-Lipschitz:
 \[F = \{ f \mid f : [0, 1]^p \to [0, 1], |f(x) - f(y)| \leq \|x - y\| \ \forall x, y \in [0, 1]^p \} . \]

 \[\mathcal{H}_\infty (F, \gamma, n) = \Theta (\gamma^{-p}) . \]
Applications

- **1-Lipschitz:**
 \[\mathcal{F} = \{ f \mid f : [0, 1]^p \to [0, 1], |f(x) - f(y)| \leq \|x - y\| \ \forall x, y \in [0, 1]^p \} \]

 \[\mathcal{H}_\infty (\mathcal{F}, \gamma, n) = \Theta (\gamma^{-p}) . \]

 We have matching upper and lower bounds for this class, so:

 \[R_n (\mathcal{F}) = \Theta (n^{\frac{p}{p+1}}) . \]
Applications

- **Linear Predictors:**

\[\mathcal{F} = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \leq 1, f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \ \forall \|x\|_2 \leq 1 \}. \]

\[\mathcal{H}_\infty (\mathcal{F}, \gamma, n) = \tilde{\Theta} (\gamma^{-2}) . \]
Applications

- **Linear Predictors:**
 \[\mathcal{F} = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \leq 1, f(x) = \frac{1}{2}[1 + \langle w, x \rangle] \forall \|x\|_2 \leq 1 \} \]

 \[H_\infty (\mathcal{F}, \gamma, n) = \tilde{\Theta} (\gamma^{-2}) \]

 Our upper bound prescribes:

 \[R_n(\mathcal{F}) \leq \tilde{\mathcal{O}}(n^{2/3}) \]
Applications

• **Linear Predictors:**

\[\mathcal{F} = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \leq 1, f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \forall \|x\|_2 \leq 1 \}. \]

\[\mathcal{H}_\infty (\mathcal{F}, \gamma, n) = \tilde{\Theta} (\gamma^{-2}). \]

Our upper bound prescribes:

\[R_n(\mathcal{F}) \leq \tilde{O}(n^{2/3}). \]

However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

\[R_n(\mathcal{F}) \leq \tilde{O}(\sqrt{n}). \]
Applications

- **Linear Predictors:**
 \[F = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \leq 1, f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \forall \|x\|_2 \leq 1 \}. \]

 \[H_\infty (F, \gamma, n) = \tilde{O} (\gamma^{-2}) . \]

 Our upper bound prescribes:

 \[R_n(F) \leq \tilde{O}(n^{2/3}). \]

 However, Rakhlin & Sridharan (2015) showed (with an explicit algorithm)

 \[R_n(F) \leq \tilde{O}(\sqrt{n}). \]

 Our upper bound cannot be improved, so the minimax regret under log loss cannot be characterized solely by sequential entropy.