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Contribution Summary

Tight upper bounds on minimax regret under log loss for all

equivalence classes of experts up to sequential entropy.

Matching lower bound for 1-Lipshitz experts on [0, 1]p.
Minimax regret under log loss cannot be resolved entirely by

the sequential entropy of the expert class, unlike square loss.

First truncation-free argument which improves on previous

best results, and leads to a chaining-free upper bound.

Online Learning and Minimax Regret

Traditional statistical learning analyzes data in a batch to produce a

prediction function, which is used on future observations assumed

to be generated i.i.d. from the training distribution.

Online learning is a framework for predicting future observations

without any assumptions about the data generating process.

For rounds t = 1, . . . , n:

Environment supplies context xt ∈ X , using the history;

Player predicts p̂t ∈ [0, 1], a distribution on binary observations;

Adversary generates an observation yt ∈ {0, 1};
Player incurs log loss `(p̂t, yt) = −yt log(p̂t) − (1 − yt) log(1 − p̂t).

Observe that the log loss corresponds to the negative log-likelihood

of the observation under the predicted distribution.

In general, the player’s cumulative loss grows super-linearly in n.

Performance is measured with respect to an expert class F ⊆ [0, 1]X .
The player’s goal is to compete against the best expert in hindsight,

which characterizes their regret:

Rn(F ; p̂, x, y) =
n∑

t=1
`(p̂t, yt) − inf

f∈F

n∑
t=1

`(f (xt), yt).

The minimax regret is an algorithm-free concept that measures how

difficult an expert class is to learn over worst-case observations.

Rn(F) = sup
x1

inf
p̂1

sup
y1

· · · sup
xn

inf
p̂n

sup
yn

Rn(F ; p̂, x, y).

Goal: Bound the minimax regret for arbitrary expert classes.

Difficulty: Log loss is neither bounded nor Lipschitz.

Sequential Covering and Entropy

We control the minimax regret by:

i) Bounding regret against a finite cover of F , and

ii) Bounding the approximation error of this cover.

A cover is determined by

the notion of distance (d).
Cesa-Bianchi & Lugosi

(1999) used a uniform

covering of F on all of X ,

which is too coarse for

many expert classes.

An empirical cover only covers F on the observed contexts, but we

also need to consider the sequential dependency structure.

We use sequential covering, introduced by Rakhlin & Sridharan (2014).

Fig: Composition of context tree with experts illustrated for binary experts.

An exact sequential cover of the

binary experts example requires

only 4 trees rather than the 8

needed for an empirical cover,

since a new covering element

can be chosen for each path

rather than each tree of F ◦ x.

We denote the sequential γ-covering number by N∞ (F ◦ x, γ).
The sequential entropy for trees of depth n is defined by

H∞(F , γ, n) = sup
x

log N∞ (F ◦ x, γ) .

Upper Bound

For any context space X and class of experts F ⊆ [0, 1]X ,

Rn(F) ≤ O
(

inf
γ>0

{
nγ + H∞(F , γ, n)

})
.

In particular, if H∞(F , γ, n) ≤ O(γ−p), then Rn(F) ≤ O(n
p

p+1).

Applications

Sequential Rademacher Complexity

Using Rn(F) = sup
x

E
ε∼{±1}n

sup
f∈F

n∑
t=1

εt f (xt(ε)), Rakhlin et al. (2015)

showed that H∞(F , γ, n) ≤ Õ(R2
n(F)/(nγ2)). So, for all F ,

Rn(F) ≤ Õ
(
R2/3

n (F) · n1/3
)

.

Neural Networks

F = {neural nets | Lipschitz activations and `1-bounded weights}

Rakhlin et al. (2015) also showed Rn(F) ≤ Õ(
√

n), so we have

Rn(F) ≤ Õ(n2/3 ).

Linear Predictors

For F = {f (x) = 1
2[1 + 〈w, x〉] | ‖w‖ ≤ 1}, H∞(F , γ, n) = Õ(1/γ2), so

Rn(F) ≤ Õ(n2/3 ).
However, Rakhlin & Sridharan (2015) have an algorithm specifically

for linear predictors that gives Rn(F) ≤ Õ(
√

n).

Lower Bound

For any p ∈ N, let F = {f : [0, 1]p → [0, 1] | f is 1-Lipschitz}.

Then, H∞(F , γ, n) = Θ(γ−p) and Rn(F) = Θ(n
p

p+1).

Implications

1)Our upper bound is tight if only sequential entropy is used.

2) Using the linear predictors example, minimax regret under log

loss cannot be resolved entirely by sequential entropy.

Ask me about how this differs from other losses.

Self-Concordance

Our proof technique exploits the self-concordance of logarithms.

A function F : R → R is self-concordant if for all x ∈ R,
|F ′′′(x)| ≤ 2F ′′(x)3/2.

Ask me about how this leads to a truncation-free argument.


