

Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Blair Bilodeau 1,2,3 Dylan J. Foster 4 Daniel M. Roy 1,2,3

 1 University of Toronto 2 Vector Institute 3 Institute for Advanced Study 4 Massachusetts Institute of Technology

Contribution Summary

- Tighter upper bounds on minimax regret under logarithmic loss for complex expert classes.
- First truncation-free argument which improves on previous best results.
- Easily optimized form of upper bound which does not require chaining.
- Characterize a lower bound using techniques from regret for square loss.

Online Learning and Minimax Regret

Traditional statistical learning analyzes data in a batch to produce a prediction function, which is used on future observations assumed to be generated i.i.d. from the training distribution. Online learning is a framework for predicting future observations without any assumptions about the data generating process.

For rounds $t = 1, \ldots, n$:

- Environment supplies context $x_t \in \mathcal{X}$, which depends on the history;
- Player predicts $\hat{p}_t \in [0, 1]$, a distribution on binary observations;
- •Adversary generates observation $y_t \in \{0, 1\}$;
- Player incurs $loss \ell_{log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) (1 y_t) \log(1 \hat{p}_t)$.

Observe that the loss corresponds to the negative log-likelihood of the observation under the predicted distribution.

In general, the player's cumulative loss grows super-linearly in n.

Performance is measured with respect to a class of experts $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$. The player's goal is to compete against the best expert in hindsight, which characterizes their regret:

$$R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell_{\log}(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell_{\log}(f(x_t), y_t).$$

The minimax regret is an algorithm-free concept that measures how difficult an expert class is to learn over worst-case observations.

$$R_n^{\log}(\mathcal{F}) = \left\langle\!\!\left\langle \sup_{x_t} \inf_{\hat{p}_t} \sup_{y_t}
ight
angle_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).
ight.$$

Goal: upper bound the minimax regret for arbitrary expert classes. **Difficulty:** logarithmic loss is neither bounded nor Lipschitz.

Sequential Covering

Cesa-Bianchi & Lugosi (1999) use a uniform covering of \mathcal{F} . This is too coarse for many expert classes.

Similarly to Rakhlin & Sridharan (2015) and Foster et al. (2018), we rely on sequential covering, introduced by Rakhlin & Sridharan (2014).

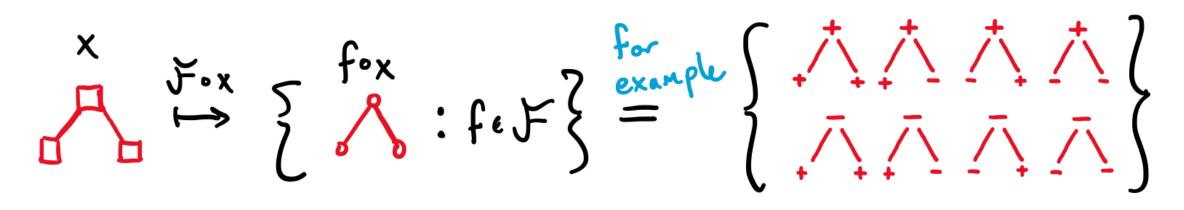
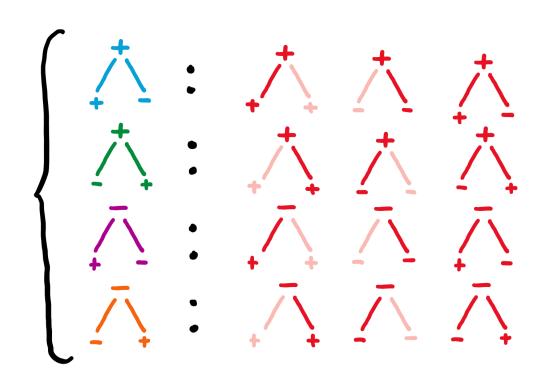


Fig: Composition of context tree with experts illustrated for binary experts.

An exact sequential cover of the binary classification example requires only 4 trees rather than the 8 needed for a uniform cover, since a new covering element can be chosen for each path rather than only for each tree of $\mathcal{F} \circ \mathbf{x}$.



We denote the sequential γ -covering number by \mathcal{N}_{∞} ($\mathcal{F} \circ \mathbf{x}, \gamma$).

Improved Upper Bound

For any context space \mathcal{X} and class of experts $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$:

$$R_n^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}, \tag{1}$$
 where $c = \frac{2 - \log(2)}{\log(3) - \log(2)}$.

Ask me why this bound does not use chaining.

Sequential Covering Number Examples

- Time-Invariant: $\mathcal{F} = \{f(x) = q \ \forall x \in \mathcal{X} \mid q \in [0, 1]\}.$ $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \leq \log(1/\gamma).$
- 1-Lipschitz: $\mathcal{F} = \{ f : \mathbb{R} \to [0,1] \mid |f'(x)| \le 1 \}.$ $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) = 1/\gamma.$
- Linear Predictors: $\mathcal{F} = \{ f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \ \forall \ ||x|| \le 1 \ ||w|| \le 1 \}.$ $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) = 1/\gamma^{2}.$

Comparison to Previous SOTA

We compare our upper bound from (1), denoted $U_n^{\text{new}}(\mathcal{F})$, to the previous best upper bound from Foster et al. (2018), denoted $U_n^{\text{old}}(\mathcal{F})$. For any context space \mathcal{X} and class of experts $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$:

1. If $\sup_{\mathbf{x}} \log (\mathcal{N}_{\infty}(\mathcal{F} \circ \mathbf{x}, \gamma)) \leq \mathcal{O}(\operatorname{polylog}(1/\gamma))$,

$$\frac{U_n^{\text{new}}(\mathcal{F})}{U_n^{\text{old}}(\mathcal{F})} \leq \mathcal{O}\left(\text{polylog}(n)\right).$$

2. If $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \approx 1/\gamma^p$ for $\mathbf{p} \leq \mathbf{1}$,

$$\frac{U_n^{\text{new}}(\mathcal{F})}{U_n^{\text{old}}(\mathcal{F})} \leq \mathcal{O}\left(\frac{1}{\text{polylog}(n)}\right).$$

3. If $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \approx 1/\gamma^p \text{ for } \mathbf{p} > \mathbf{1}$,

$$\frac{U_n^{\text{new}}(\mathcal{F})}{U_n^{\text{old}}(\mathcal{F})} \leq \mathcal{O}\left(\frac{1}{n^{\frac{p-1}{2p(p+1)}} \text{polylog}(n)}\right).$$

Self-Concordance

Our proof technique exploits the self-concordance of logarithms. A function $F: \mathbb{R} \to \mathbb{R}$ is self-concordant if for all $x \in \mathbb{R}$,

$$|F'''(x)| \le 2F''(x)^{3/2}.$$

Ask me about this, and how it leads to a truncation-free argument.

Lower Bound

If p > 0, there exists an \mathcal{F} with $\sup_{\mathbf{x}} \log (\mathcal{N}_{\infty} (\mathcal{F} \circ \mathbf{x}, \gamma)) \simeq \gamma^{-p}$ and $R_n^{\log}(\mathcal{F}) \geq \Omega\left(n^{\frac{p}{p+2}}\right)$.

