Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Blair Bilodeau 1,2 with Dylan J. Foster 3 and Daniel M. Roy 1,2 March 11, 2020

¹Department of Statistical Sciences, University of Toronto
²Vector Institute
³Institute for Foundations of Data Science, Massachusetts Institute of Technology

Motivation

Weather Forecasting

"And now the 7-day forecast ... "

Goal: forecast the probability of rain from historical data and current conditions.

Weather Forecasting

"And now the 7-day forecast ... "

Goal: forecast the probability of rain from historical data and current conditions.

Considerations

- Which assumptions to make about historical trends continuing?
- How many physical relationships should be incorporated in the model?
- Are some missed predictions more expensive than others?

Traditional Statistical Learning

- Receive a batch of data
- Estimate a prediction function \hat{h}
- Evaluate performance on new data assumed to be from the same distribution

Traditional Statistical Learning

But what if there's a changepoint...

Traditional Statistical Learning

...or your training data isn't even i.i.d.?

We want to remove assumptions about the data generating process. In particular, **future data may not be i.i.d. with past data**. We want to remove assumptions about the data generating process. In particular, **future data may not be i.i.d. with past data**.

Statistics does this with, for example,

- Markov assumption
- stationarity assumption (time series)
- covariance structure assumption (e.g., Gaussian process)

We want to remove assumptions about the data generating process. In particular, **future data may not be i.i.d. with past data**.

Statistics does this with, for example,

- Markov assumption
- stationarity assumption (time series)
- covariance structure assumption (e.g., Gaussian process)

But these assumptions are often **uncheckable** or **false**.

Online Learning

Online Learning

- Predict $\hat{y}_t \in \hat{\mathcal{Y}}$
- Observe $y_t \in \mathcal{Y}$
- Incur loss $\ell(\hat{y}_t, y_t)$

Online Learning

- Predict $\hat{y}_t \in \hat{\mathcal{Y}}$
- Observe $y_t \in \mathcal{Y}$ We do not assume this is generated by a model
- Incur loss $\ell(\hat{y}_t, y_t)$

Contextual Online Learning

- Observe context $x_t \in \mathcal{X}$
- Predict $\hat{y}_t \in \hat{\mathcal{Y}}$
- Observe $y_t \in \mathcal{Y}$ We do not assume this is generated by a model
- Incur loss $\ell(\hat{y}_t, y_t)$

Contextual Online Learning

- Observe context $x_t \in \mathcal{X} \longleftarrow$ Also has no model assumptions
- Predict $\hat{y}_t \in \hat{\mathcal{Y}}$
- Observe $y_t \in \mathcal{Y}$ We do not assume this is generated by a model
- Incur loss $\ell(\hat{y}_t, y_t)$

Measuring Performance

In statistical learning, performance is often measured against:

- a ground truth, e.g., parameter estimation
- the best predictor from some class for the underlying probability model

In statistical learning, performance is often measured against:

- a ground truth, e.g., parameter estimation
- the best predictor from some class for the underlying probability model

These measures quantify **guarantees about the future given the past**. Without a probabilistic model:

- no notion of ground truth to compare with
- the "best hypothesis" in a class is not clearly defined
- cannot naively hope to do well on future observations

In statistical learning, performance is often measured against:

- a ground truth, e.g., parameter estimation
- the best predictor from some class for the underlying probability model

These measures quantify **guarantees about the future given the past**. Without a probabilistic model:

- no notion of ground truth to compare with
- the "best hypothesis" in a class is not clearly defined
- cannot naively hope to do well on future observations

If I can't promise about the future, can I say something about the past?

In statistical learning, performance is often measured against:

- a ground truth, e.g., parameter estimation
- the best predictor from some class for the underlying probability model

These measures quantify **guarantees about the future given the past**. Without a probabilistic model:

- no notion of ground truth to compare with
- the "best hypothesis" in a class is not clearly defined
- cannot naively hope to do well on future observations

Consider a relative notion of performance in hindsight.

- Relative to a class $\mathcal{F} \subseteq \{f : \mathcal{X} \to \hat{\mathcal{Y}}\}$, consisting of **experts** $f \in \mathcal{F}$.
- Compete against the optimal $f \in \mathcal{F}$ on the actual sequence of observations from past rounds.

Regret

$$\text{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

Regret

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}};\mathcal{F},\mathbf{x},\mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t,y_t) - \inf_{f\in\mathcal{F}} \sum_{t=1}^n \ell(f(x_t),y_t).$$

 \mathbf{n}

This quantity depends on

- ŷ: Player predictions,
- \mathcal{F} : Expert class,
- x: Observed contexts,
- y: Observed data points.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \sup_{x_1} \inf_{\hat{y}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{y}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} R_n^{\ell}(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \sup_{\boldsymbol{x_1}} \inf_{\hat{y_1}} \sup_{y_1} \sup_{x_2} \inf_{\hat{y_2}} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{y_n}} \sup_{y_n} R_n^{\ell}(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

The first context is observed.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \sup_{x_1} \inf_{\hat{\boldsymbol{y}}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{y}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} R_n^{\ell}(\hat{\boldsymbol{y}}; \mathcal{F}, \boldsymbol{x}, \boldsymbol{y}).$$

The player makes their prediction.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \sup_{x_1} \inf_{\hat{y}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{y}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} R_n^{\ell}(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

The adversary plays an observation.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \sup_{x_1} \inf_{\hat{y}_1} \sup_{y_1} \sup_{\boldsymbol{x}_2} \inf_{\boldsymbol{y}_2} \sup_{\boldsymbol{y}_2} \cdots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} R_n^{\ell}(\hat{\boldsymbol{y}}; \mathcal{F}, \boldsymbol{x}, \boldsymbol{y}).$$

This repeats for all n rounds.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^\ell(\mathcal{F}) = \sup_{x_1} \inf_{\hat{y}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{y}_2} \sup_{y_2} \cdots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

This repeats for all n rounds.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \left\| \left\{ \sup_{x_t} \inf_{\hat{y}_t} \sup_{y_t} \right\}_{t=1}^n R_n^{\ell}(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}). \right\}$$

The notation $\langle\!\langle \cdot \rangle\!\rangle_{t=1}^n$ denotes repeated application of operators.

$$\mathsf{Regret:} \qquad R_n^\ell(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}) = \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

$$R_n^{\ell}(\mathcal{F}) = \left\| \sup_{x_t} \inf_{\hat{y}_t} \sup_{y_t} \right\|_{t=1}^n R_n^{\ell}(\hat{\mathbf{y}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

Interpretation: The tuple (ℓ, \mathcal{F}) is online learnable if $R_n^{\ell}(\mathcal{F}) < o(n)$.

- slow rate: $R_n^\ell(\mathcal{F}) = \Theta(\sqrt{n})$
- fast rate: $R_n^\ell(\mathcal{F}) \leq \mathcal{O}(\log(n))$

Logarithmic Loss

Sequential Probability Assignment

In each round, the prediction is a distribution on possible observations.

Sequential Probability Assignment

In each round, the prediction is a distribution on possible observations.

Measuring Loss

What is the correct notion of loss?

Measuring Loss

Intuition: being confidently wrong is much worse than being indecisive. **Statistical motivation:** maximum likelihood estimation for a Bernoulli.

Measuring Loss

Intuition: being confidently wrong is much worse than being indecisive. Statistical motivation: maximum likelihood estimation for a Bernoulli. Logarithmic Loss

$$\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(1 - \hat{p}_t).$$
Why is this difficult?

Standard online learning techniques rely on loss being bounded or Lipschitz.

Why is this difficult?

Standard online learning techniques rely on loss being bounded or Lipschitz.

$$\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(1 - \hat{p}_t).$$

y = 1

Why is this difficult?

Standard online learning techniques rely on loss being bounded or Lipschitz.

$$\ell_{\log}(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) - (1 - y_t) \log(1 - \hat{p}_t).$$

y = 1

Bounding Regret

Dual Game

Recall that the minimax regret is

$$R_n^{\log}(\mathcal{F}) = \left\| \left(\sup_{x_t} \inf_{\hat{p}_t} \sup_{y_t} \right) \right\|_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

Dual Game

Recall that the minimax regret is

$$R_n^{\log}(\mathcal{F}) = \left\| \left(\sup_{x_t} \inf_{\hat{p}_t} \sup_{y_t} \right) \right\|_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

The worst-case observations can equivalently be viewed as

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \inf_{\hat{p}_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y})$$

Dual Game

Recall that the minimax regret is

$$R_n^{\log}(\mathcal{F}) = \left\| \left(\sup_{x_t} \inf_{\hat{p}_t} \sup_{y_t} \right) \right\|_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

The worst-case observations can equivalently be viewed as

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \inf_{\hat{p}_t} \sup_{y_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n R_n^{\log}(\hat{\mathbf{p}}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

(Abernethy et al., 2009, Rakhlin and Sridharan, 2015) An extension of the minimax theorem gives

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n R_n^{\log}(\mathbf{p}; \mathcal{F}, \mathbf{x}, \mathbf{y}).$$

Expanding the regret term, we get

$$R_n^{\log}(\mathcal{F}) = \left\| \left\{ \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

Expanding the regret term, we get

$$R_n^{\log}(\mathcal{F}) = \left\| \left\{ \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

The presence of an expected supremum suggests empirical process theory.

Expanding the regret term, we get

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

The presence of an expected supremum suggests empirical process theory.

- Discretize the infinite supremum into a finite cover.
- Bound the expected maximum of the finite cover.
- Bound the error from only considering the finite cover.

Distance between $f, g \in \mathcal{F}$:

$$d(f,g) = \sup_{x \in \mathcal{X}} \sup_{y \in \{0,1\}} |\ell_{\log}(f(x),y) - \ell_{\log}(g(x),y)|$$

Distance between $f, g \in \mathcal{F}$:

$$d(f,g) = \sup_{x \in \mathcal{X}} \sup_{y \in \{0,1\}} \left| \ell_{\log}(f(x), y) - \ell_{\log}(g(x), y) \right|$$

Class ${\mathcal G}$ covers class ${\mathcal F}$ at margin γ if:

 $\sup_{f \in \mathcal{F}} \inf_{g \in \mathcal{G}} d(f,g) \le \gamma.$

Distance between $f, g \in \mathcal{F}$:

$$d(f,g) = \sup_{x \in \mathcal{X}} \sup_{y \in \{0,1\}} \left| \ell_{\log}(f(x), y) - \ell_{\log}(g(x), y) \right|$$

Class ${\mathcal G}$ covers class ${\mathcal F}$ at margin γ if:

$$\sup_{f \in \mathcal{F}} \inf_{g \in \mathcal{G}} d(f,g) \le \gamma.$$

Instead, we use sequential covering from Rakhlin and Sridharan (2014).

$$R_n^{\log}(\mathcal{F}) = \left\| \left\{ \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \left\| \sup_{x_t} \sup_{p_t} \mathbb{E}_{y_t \sim p_t} \right\|_{t=1}^n \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t, y_t) - \ell_{\log}(f(x_t), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \sup_{\mathbf{x}} \sup_{\mathbf{p}} \mathbb{E} \sup_{\mathbf{y} \sim \mathbf{p}} \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t(\mathbf{y}), y_t) - \ell_{\log}(f(x_t(\mathbf{y})), y_t) \right].$$

$$R_n^{\log}(\mathcal{F}) = \sup_{\mathbf{x}} \sup_{\mathbf{p}} \mathbb{E}_{\mathbf{y} \sim \mathbf{p}} \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t(\mathbf{y}), y_t) - \ell_{\log}(f(x_t(\mathbf{y})), y_t) \right].$$

Cover the class of trees $\mathcal{F} \circ \textbf{x}$ defined by composing \mathcal{F} with a context tree x:

$$R_n^{\log}(\mathcal{F}) = \sup_{\mathbf{x}} \sup_{\mathbf{p}} \mathbb{E}_{\mathbf{y} \sim \mathbf{p}} \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t(\mathbf{y}), y_t) - \ell_{\log}(f(x_t(\mathbf{y})), y_t) \right].$$

Cover the class of trees $\mathcal{F} \circ x$ defined by composing \mathcal{F} with a context tree x:

A class of trees V sequentially covers $\mathcal{F} \circ \mathbf{x}$ at margin γ if:

$$\sup_{\mathbf{u}\in\mathcal{F}\circ\mathbf{x}} \sup_{\mathbf{y}\in\{0,1\}^n} \inf_{\mathbf{v}\in V} \|\mathbf{u}(\mathbf{y}) - \mathbf{v}(\mathbf{y})\|_p \le \gamma.$$

$$R_n^{\log}(\mathcal{F}) = \sup_{\mathbf{x}} \sup_{\mathbf{p}} \mathbb{E}_{\mathbf{y} \sim \mathbf{p}} \sup_{f \in \mathcal{F}} \left[\sum_{t=1}^n \ell_{\log}(p_t(\mathbf{y}), y_t) - \ell_{\log}(f(x_t(\mathbf{y})), y_t) \right].$$

Cover the class of trees $\mathcal{F} \circ x$ defined by composing \mathcal{F} with a context tree x:

A class of trees V sequentially covers $\mathcal{F} \circ \mathbf{x}$ at margin γ if:

$$\sup_{\mathbf{u}\in\mathcal{F}\circ\mathbf{x}} \sup_{\mathbf{y}\in\{0,1\}^n} \inf_{\mathbf{v}\in V} \|\mathbf{u}(\mathbf{y})-\mathbf{v}(\mathbf{y})\|_p \leq \gamma$$

The order of observations and covering elements is reversed from a uniform cover.

To illustrate the utility of sequential covering, consider binary experts for n = 2:

$$\bigwedge^{x} \stackrel{\text{Fox}}{\mapsto} \left\{ \bigwedge^{\text{fox}} : f \in \mathcal{F} \right\} \stackrel{\text{for}}{=} \left\{ \bigwedge^{\text{for}} \bigwedge^{\text{for}} \bigwedge^{\text{for}} \left\{ \bigwedge^{\text{for}} \bigwedge^{\text{for}} \bigwedge^{\text{for}} \left\{ \bigwedge^{\text{for}} \bigwedge^{\text{for}} \bigwedge^{\text{for}} \left\{ \bigwedge^{\text{for}} \bigwedge^{\text{for}} \bigwedge^{\text{for}} \right\} \right\}$$

To illustrate the utility of sequential covering, consider binary experts for n = 2:

$$\overset{\mathsf{x}}{\bigwedge} \overset{\mathsf{f}}{\mapsto} \left\{ \begin{array}{c} f^{\mathsf{ex}} \\ \overset{\mathsf{f}}{\wedge} \end{array} : f \in \mathcal{F} \right\} \stackrel{\mathsf{for}}{=} \left\{ \begin{array}{c} \dot{\wedge} \dot{\wedge} \dot{\wedge} \dot{\wedge} \\ \dot{\wedge} \dot{\wedge} \dot{\wedge} \dot{\wedge} \\ \dot{\wedge} \dot{\wedge} \dot{\wedge} \end{array} \right\}$$

The only uniform cover of $\mathcal{F} \circ \textbf{x}$ is itself, which has 8 elements.

To illustrate the utility of sequential covering, consider binary experts for n = 2:

$$\overset{\mathsf{x}}{\bigwedge} \overset{\mathsf{F}}{\mapsto} \left\{ \begin{array}{c} f^{\mathsf{ex}} \\ \overset{\mathsf{f}}{\wedge} \end{array} : f \in \mathcal{F} \right\} \stackrel{\mathsf{for}}{=} \left\{ \begin{array}{c} \dot{\wedge} \dot{\wedge} \dot{\wedge} \dot{\wedge} \\ \dot{\bar{\wedge}} \dot{\bar{\wedge}} \dot{\bar{\wedge}} \end{array} \right\}$$

The only uniform cover of $\mathcal{F} \circ \mathbf{x}$ is itself, which has 8 elements.

For a sequential cover, we can choose a different element for each path, so only 4 trees are required.

• Time-Invariant: $\mathcal{F} = \{ f \mid \exists q \in [0,1] \text{ s.t. } f(x) = q \ \forall x \in \mathcal{X} \}.$

$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \le \log(1/\gamma).$$

• Time-Invariant: $\mathcal{F} = \{ f \mid \exists q \in [0,1] \text{ s.t. } f(x) = q \ \forall x \in \mathcal{X} \}.$

$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \le \log(1/\gamma).$$

• Linear Predictors:

$$\mathcal{F} = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \le 1, f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \forall \|x\|_2 \le 1 \}.$$
$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) = 1/\gamma^2.$$

• Time-Invariant: $\mathcal{F} = \{ f \mid \exists q \in [0,1] \text{ s.t. } f(x) = q \ \forall x \in \mathcal{X} \}.$

$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \le \log(1/\gamma).$$

• Linear Predictors:

$$\mathcal{F} = \{ f \mid \exists w \text{ s.t. } \|w\|_2 \le 1, f(x) = \frac{1}{2} [1 + \langle w, x \rangle] \forall \|x\|_2 \le 1 \}.$$
$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) = 1/\gamma^2.$$

• 1-Lipschitz: $\mathcal{F} = \{ f \mid f : \mathbb{R}^d \to [0,1], \|\nabla f(x)\|_{\infty} \leq 1 \}.$

$$\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) = 1/\gamma^{d}.$$

Improved Minimax Bounds

Theorem (B., Foster, Roy, 2020)

There exists c > 0 such that for all \mathcal{F} ,

$$R_{n}^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

Theorem (B., Foster, Roy, 2020)

There exists c > 0 such that for all \mathcal{F} ,

$$R_{n}^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

Upper Bound (Computation)

If $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \asymp \gamma^{-p}$,

 $R_n^{\log}(\mathcal{F}) \le \mathcal{O}(n^{\frac{p}{p+1}}).$

Theorem (B., Foster, Roy, 2020)

There exists c > 0 such that for all \mathcal{F} ,

$$R_{n}^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

Upper Bound (Computation)

If $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \asymp \gamma^{-p}$,

$$R_n^{\log}(\mathcal{F}) \le \mathcal{O}(n^{\frac{p}{p+1}}).$$

Theorem (B., Foster, Roy, 2020)

If p > 0, there exists an \mathcal{F} with $\sup_{\mathbf{x}} \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \asymp \gamma^{-p}$ and

$$R_n^{\log}(\mathcal{F}) \ge \Omega\left(n^{\frac{p}{p+2}}\right).$$

Our results compared to the previous best upper bound from Foster et al. (2018).

Order of sequential covering number

Advances Underlying Results
The standard procedure to control log loss uses truncation.

Define the truncated expert class $\mathcal{F}^{\delta}=\{f^{\delta}:f\in\mathcal{F}\}$ for $\delta\in(0,1/2),$ where

$$f^{\delta}(x) = \begin{cases} \delta & f(x) < \delta \\ f(x) & \delta \le f(x) \le 1 - \delta \\ 1 - \delta & f(x) > 1 - \delta \end{cases}$$

The standard procedure to control log loss uses truncation.

Define the truncated expert class $\mathcal{F}^{\delta}=\{f^{\delta}:f\in\mathcal{F}\}$ for $\delta\in(0,1/2),$ where

$$f^{\delta}(x) = \begin{cases} \delta & f(x) < \delta \\ f(x) & \delta \le f(x) \le 1 - \delta \\ 1 - \delta & f(x) > 1 - \delta \end{cases}$$

• Observe that for $p \in [\delta, 1 - \delta]$, $\ell_{\log}(p, y)$ is $1/\delta$ -Lipschitz.

The standard procedure to control log loss uses truncation.

Define the truncated expert class $\mathcal{F}^{\delta}=\{f^{\delta}:f\in\mathcal{F}\}$ for $\delta\in(0,1/2),$ where

$$f^{\delta}(x) = \begin{cases} \delta & f(x) < \delta \\ f(x) & \delta \le f(x) \le 1 - \delta \\ 1 - \delta & f(x) > 1 - \delta \end{cases}$$

- Observe that for $p \in [\delta, 1 \delta]$, $\ell_{\log}(p, y)$ is $1/\delta$ -Lipschitz.
- It can be shown that $R_n^{\log}(\mathcal{F}) \leq R_n^{\log}(\mathcal{F}^{\delta}) + 2n\delta$.

The standard procedure to control log loss uses truncation.

Define the truncated expert class $\mathcal{F}^{\delta}=\{f^{\delta}:f\in\mathcal{F}\}$ for $\delta\in(0,1/2),$ where

$$f^{\delta}(x) = \begin{cases} \delta & f(x) < \delta \\ f(x) & \delta \le f(x) \le 1 - \delta \\ 1 - \delta & f(x) > 1 - \delta \end{cases}$$

- Observe that for $p \in [\delta, 1 \delta]$, $\ell_{\log}(p, y)$ is $1/\delta$ -Lipschitz.
- It can be shown that $R_n^{\log}(\mathcal{F}) \leq R_n^{\log}(\mathcal{F}^{\delta}) + 2n\delta$.

Rakhlin and Sridharan (2015) hypothesize this truncation argument is suboptimal, and pose the open problem of finding a tighter bound without it.

The standard procedure to control log loss uses truncation.

Define the truncated expert class $\mathcal{F}^{\delta}=\{f^{\delta}:f\in\mathcal{F}\}$ for $\delta\in(0,1/2),$ where

$$f^{\delta}(x) = \begin{cases} \delta & f(x) < \delta \\ f(x) & \delta \le f(x) \le 1 - \delta \\ 1 - \delta & f(x) > 1 - \delta \end{cases}$$

- Observe that for $p \in [\delta, 1 \delta]$, $\ell_{\log}(p, y)$ is $1/\delta$ -Lipschitz.
- It can be shown that $R_n^{\log}(\mathcal{F}) \leq R_n^{\log}(\mathcal{F}^{\delta}) + 2n\delta$.

Rakhlin and Sridharan (2015) hypothesize this truncation argument is suboptimal, and pose the open problem of finding a tighter bound without it.

Our argument does not require truncation.

 $|F'''(x)| \le 2F''(x)^{3/2}.$

Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994) A function $F : \mathbb{R} \to \mathbb{R}$ is self-concordant if

 $|F'''(x)| \le 2F''(x)^{3/2}.$

Logarithmic loss is self-concordant as a function of p.

 $|F'''(x)| \le 2F''(x)^{3/2}.$

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a *self-concordant barrier function* leads to polynomial iterations for high accuracy.

 $|F'''(x)| \le 2F''(x)^{3/2}.$

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a *self-concordant barrier function* leads to polynomial iterations for high accuracy.

If F is self-concordant, then $\forall x, y \in \mathbb{R}$

$$F(x) - F(y) \le (x - y)F'(x) - |x - y|\sqrt{F''(x)} + \log\left(1 + |x - y|\sqrt{F''(x)}\right).$$

 $|F'''(x)| \le 2F''(x)^{3/2}.$

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a *self-concordant barrier function* leads to polynomial iterations for high accuracy.

If F is self-concordant, then $\forall x, y \in \mathbb{R}$

$$F(x) - F(y) \le (x - y)F'(x) - |x - y|\sqrt{F''(x)} + \log\left(1 + |x - y|\sqrt{F''(x)}\right).$$

We use the second term to control the gradient of logarithmic loss.

Recall our upper bound:

$$R_n^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

Recall our upper bound:

$$R_n^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

• Rather than a **single discretization step**, it is common to use **multiple**, **nested discretizations** of finer sizes – called *chaining*.

Recall our upper bound:

$$R_n^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma > 0} \left\{ 4n\gamma + c \log \left(\mathcal{N}_{\infty} \left(\mathcal{F} \circ \mathbf{x}, \gamma \right) \right) \right\}.$$

- Rather than a **single discretization step**, it is common to use **multiple**, **nested discretizations** of finer sizes called *chaining*.
- Our current approach does not permit such a technique, yet improves on previous results which do.

Recall our upper bound:

$$R_n^{\log}(\mathcal{F}) \leq \sup_{\mathbf{x}} \inf_{\gamma \geq 0} \left\{ 4n\gamma + c\log\left(\mathcal{N}_{\infty}\left(\mathcal{F} \circ \mathbf{x}, \gamma\right)\right) \right\}.$$

- Rather than a **single discretization step**, it is common to use **multiple**, **nested discretizations** of finer sizes called *chaining*.
- Our current approach does not permit such a technique, yet improves on previous results which do.
- Naive attempts to change our result to allow chaining fail, and we are actively working on this area.

Motivation

• Make probabilistic forecasts without making assumptions about the data generating process – whether i.i.d. or more sophisticated dependence structure.

Motivation

• Make probabilistic forecasts without making assumptions about the data generating process – whether i.i.d. or more sophisticated dependence structure.

Problem Setup

• Bounding minimax regret for arbitrary expert classes under logarithmic loss.

Motivation

• Make probabilistic forecasts without making assumptions about the data generating process – whether i.i.d. or more sophisticated dependence structure.

Problem Setup

• Bounding minimax regret for arbitrary expert classes under logarithmic loss.

Contributions

- Improved upper bound for complex classes and provided lower bound.
- Proof technique is truncation free and only requires one step discretization.

Motivation

• Make probabilistic forecasts without making assumptions about the data generating process – whether i.i.d. or more sophisticated dependence structure.

Problem Setup

• Bounding minimax regret for arbitrary expert classes under logarithmic loss.

Contributions

- Improved upper bound for complex classes and provided lower bound.
- Proof technique is truncation free and only requires one step discretization.

Next Steps

- Match upper and lower bounds.
- Obtain bounds that interpolate between stochastic and fully adversarial.

Infinite Dimensional Linear Prediction

- $\mathcal{X} = B_2$, the unit ball in a Hilbert space,
- $\mathcal{F} = \{ f(x) = (\langle w, x \rangle + 1)/2 : w \in B_2 \},\$
- Log-loss can be written as

 $g_t(w) = -y_t \log(1 + \langle w, x_t \rangle) - (1 - y_t) \log(1 - \langle w, x_t \rangle).$

Infinite Dimensional Linear Prediction

- $\mathcal{X} = B_2$, the unit ball in a Hilbert space,
- $\mathcal{F} = \{ f(x) = (\langle w, x \rangle + 1)/2 : w \in B_2 \},\$
- Log-loss can be written as $g_t(w) = -y_t \log(1 + \langle w, x_t \rangle) (1 y_t) \log(1 \langle w, x_t \rangle).$

Constructive Algorithm (Rakhlin and Sridharan, 2015)

• Follow-the-Regularized-Leader with a self-concordant barrier function gives $R_n^{\log}(\mathcal{F}) \leq \tilde{\mathcal{O}}(\sqrt{n}).$

Infinite Dimensional Linear Prediction

- $\mathcal{X} = B_2$, the unit ball in a Hilbert space,
- $\mathcal{F} = \{ f(x) = (\langle w, x \rangle + 1)/2 : w \in B_2 \},\$
- Log-loss can be written as $g_t(w) = -y_t \log(1 + \langle w, x_t \rangle) - (1 - y_t) \log(1 - \langle w, x_t \rangle).$

Constructive Algorithm (Rakhlin and Sridharan, 2015)

- Follow-the-Regularized-Leader with a self-concordant barrier function gives $R_n^{\log}(\mathcal{F}) \leq \tilde{\mathcal{O}}(\sqrt{n}).$
- This is tighter than any known upper bounds, including ours, and matches the lower bound.

Infinite Dimensional Linear Prediction

- $\mathcal{X} = B_2$, the unit ball in a Hilbert space,
- $\mathcal{F} = \{ f(x) = (\langle w, x \rangle + 1)/2 : w \in B_2 \},\$
- Log-loss can be written as $g_t(w) = -y_t \log(1 + \langle w, x_t \rangle) (1 y_t) \log(1 \langle w, x_t \rangle).$

Constructive Algorithm (Rakhlin and Sridharan, 2015)

- Follow-the-Regularized-Leader with a self-concordant barrier function gives $R_n^{\log}(\mathcal{F}) \leq \tilde{\mathcal{O}}(\sqrt{n}).$
- This is tighter than any known upper bounds, including ours, and matches the lower bound.
- It is not well-defined how to apply a concrete algorithm technique like this to arbitrary expert classes.