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Motivation



Weather Forecasting

Goal: forecast the probability of rain from historical data and current conditions.

Considerations

• Which assumptions to make about historical trends continuing?

• How many physical relationships should be incorporated in the model?

• Are some missed predictions more expensive than others?
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Traditional Statistical Learning

• Receive a batch of data

• Estimate a prediction function ĥ

• Evaluate performance on new data assumed to be from the same distribution
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But what if there’s a changepoint...
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...or your training data isn’t even i.i.d.?



Statistical Solutions

We want to remove assumptions about the data generating process.

In particular, future data may not be i.i.d. with past data.

Statistics does this with, for example,

• Markov assumption

• stationarity assumption (time series)

• covariance structure assumption (e.g., Gaussian process)

But these assumptions are often uncheckable or false.
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• Observe yt ∈ Y ←− We do not assume this is generated by a model

• Incur loss `(ŷt, yt)



Online Learning

A framework where the past may not be indicative of the future.

Contextual Online Learning

For rounds t = 1, . . . , n:

• Observe context xt ∈ X ←− Also has no model assumptions

• Predict ŷt ∈ Ŷ
• Observe yt ∈ Y ←− We do not assume this is generated by a model

• Incur loss `(ŷt, yt)



Measuring Performance

In statistical learning, performance is often measured against:

• a ground truth, e.g., parameter estimation

• the best predictor from some class for the underlying probability model

These measures quantify guarantees about the future given the past.

Without a probabilistic model:

• no notion of ground truth to compare with

• the “best hypothesis” in a class is not clearly defined

• cannot naively hope to do well on future observations
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If I can’t promise about the future, can I say something about the past?



Measuring Performance

In statistical learning, performance is often measured against:

• a ground truth, e.g., parameter estimation

• the best predictor from some class for the underlying probability model

These measures quantify guarantees about the future given the past.

Without a probabilistic model:

• no notion of ground truth to compare with

• the “best hypothesis” in a class is not clearly defined

• cannot naively hope to do well on future observations

Consider a relative notion of performance in hindsight.
• Relative to a class F ⊆ {f : X → Ŷ}, consisting of experts f ∈ F .

• Compete against the optimal f ∈ F on the actual sequence of observations

from past rounds.



Regret

Regret: R`n(ŷ;F , x, y) =

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt).

This quantity depends on

• ŷ: Player predictions,

• F : Expert class,

• x: Observed contexts,

• y: Observed data points.
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Regret: R`n(ŷ;F , x, y) =

n∑
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Interpretation: The tuple (`,F) is online learnable if R`n(F) < o(n).

• slow rate: R`n(F) = Θ(
√
n)

• fast rate: R`n(F) ≤ O(log(n))
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Sequential Probability Assignment

In each round, the prediction is a distribution on possible observations.

Predicting Binary Outcomes

y ∈ Y = {0, 1} and p̂ ∈ Ŷ ≡ [0, 1]
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What is the correct notion of loss?

Intuition: being confidently wrong is much worse than being indecisive.

Statistical motivation: maximum likelihood estimation for a Bernoulli.

Logarithmic Loss

`log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(1− p̂t).
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Measuring Loss

Why is this difficult?

Standard online learning techniques rely on loss being bounded or Lipschitz.

`log(p̂t, yt) = −yt log(p̂t)− (1− yt) log(1− p̂t).

y = 1 y = 0

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

−
8

0
−

6
0

−
4

0
−

2
0

0

p

d
/d

p
 lo

g
lo

ss
(p

,1
)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0
1

0
0

p

d
/d

p
 lo

g
lo

ss
(p

,0
)



Bounding Regret



Dual Game

Recall that the minimax regret is

Rlog
n (F) = ⟪sup
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p̂t

sup
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⟫
n

t=1

Rlog
n (p̂;F , x, y).

The worst-case observations can equivalently be viewed as

Rlog
n (F) = ⟪sup
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inf
p̂t

sup
pt

E
yt∼pt

⟫
n

t=1

Rlog
n (p̂;F , x, y).

(Abernethy et al., 2009, Rakhlin and Sridharan, 2015)

An extension of the minimax theorem gives

Rlog
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Empirical Process Theory

Expanding the regret term, we get

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

The presence of an expected supremum suggests empirical process theory.

• Discretize the infinite supremum into a finite cover.

• Bound the expected maximum of the finite cover.

• Bound the error from only considering the finite cover.
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Uniform Covering Fails

Early work (Cesa-Bianchi and Lugosi, 1999, Opper and Haussler, 1999) used a

uniform covering approach, but this is too coarse for many expert classes.

Distance between f, g ∈ F :

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

Class G covers class F at margin γ if:

sup
f∈F

inf
g∈G

d(f, g) ≤ γ.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).



Uniform Covering Fails

Early work (Cesa-Bianchi and Lugosi, 1999, Opper and Haussler, 1999) used a

uniform covering approach, but this is too coarse for many expert classes.

Distance between f, g ∈ F :

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

Class G covers class F at margin γ if:

sup
f∈F

inf
g∈G

d(f, g) ≤ γ.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).



Uniform Covering Fails

Early work (Cesa-Bianchi and Lugosi, 1999, Opper and Haussler, 1999) used a

uniform covering approach, but this is too coarse for many expert classes.

Distance between f, g ∈ F :

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

Class G covers class F at margin γ if:

sup
f∈F

inf
g∈G

d(f, g) ≤ γ.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).



Uniform Covering Fails

Early work (Cesa-Bianchi and Lugosi, 1999, Opper and Haussler, 1999) used a

uniform covering approach, but this is too coarse for many expert classes.

Distance between f, g ∈ F :

d(f, g) = sup
x∈X

sup
y∈{0,1}

|`log(f(x), y)− `log(g(x), y)|

Class G covers class F at margin γ if:

sup
f∈F

inf
g∈G

d(f, g) ≤ γ.

Instead, we use sequential covering from Rakhlin and Sridharan (2014).



Binary Tree Notation

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

We can encode the sequential nature of xt and pt using binary trees:



Binary Tree Notation

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

We can encode the sequential nature of xt and pt using binary trees:



Binary Tree Notation

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

We can encode the sequential nature of xt and pt using binary trees:



Binary Tree Notation

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

We can encode the sequential nature of xt and pt using binary trees:



Binary Tree Notation

Rlog
n (F) = ⟪sup

xt

sup
pt

E
yt∼pt

⟫
n

t=1

sup
f∈F

[
n∑
t=1

`log(pt, yt)− `log(f(xt), yt)

]
.

We can encode the sequential nature of xt and pt using binary trees:



Sequential Covering

Rlog
n (F) = sup

x
sup

p
E

y∼p
sup
f∈F

[
n∑
t=1

`log(pt(y), yt)− `log(f(xt(y)), yt)

]
.

Cover the class of trees F ◦ x defined by composing F with a context tree x:



Sequential Covering

Rlog
n (F) = sup

x
sup

p
E

y∼p
sup
f∈F

[
n∑
t=1

`log(pt(y), yt)− `log(f(xt(y)), yt)

]
.

Cover the class of trees F ◦ x defined by composing F with a context tree x:



Sequential Covering

Rlog
n (F) = sup

x
sup

p
E

y∼p
sup
f∈F

[
n∑
t=1

`log(pt(y), yt)− `log(f(xt(y)), yt)

]
.

Cover the class of trees F ◦ x defined by composing F with a context tree x:

A class of trees V sequentially covers F ◦ x at margin γ if:

sup
u∈F◦x

sup
y∈{0,1}n

inf
v∈V
‖u(y)− v(y)‖p ≤ γ.



Sequential Covering

Rlog
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To illustrate the utility of sequential covering, consider binary experts for n = 2:

The only uniform cover of F ◦ x is itself, which has 8 elements.

For a sequential cover, we can

choose a different element for

each path, so only 4 trees are

required.
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Sequential Covering Examples

Examples of sequential covering numbers:

• Time-Invariant: F = {f | ∃q ∈ [0, 1] s.t. f(x) = q ∀x ∈ X}.

sup
x

log (N∞ (F ◦ x, γ)) ≤ log(1/γ).

• Linear Predictors:

F = {f | ∃w s.t. ‖w‖2 ≤ 1, f(x) = 1
2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

sup
x

log (N∞ (F ◦ x, γ)) = 1/γ2.

• 1-Lipschitz: F = {f | f : Rd → [0, 1], ‖∇f(x)‖∞ ≤ 1}.

sup
x

log (N∞ (F ◦ x, γ)) = 1/γd.
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2 [1 + 〈w, x〉] ∀ ‖x‖2 ≤ 1}.

sup
x

log (N∞ (F ◦ x, γ)) = 1/γ2.

• 1-Lipschitz: F = {f | f : Rd → [0, 1], ‖∇f(x)‖∞ ≤ 1}.

sup
x

log (N∞ (F ◦ x, γ)) = 1/γd.
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Improved Minimax Bounds

Theorem (B., Foster, Roy, 2020)

There exists c > 0 such that for all F ,

Rlog
n (F) ≤ sup

x
inf
γ>0
{4nγ + c log (N∞ (F ◦ x, γ))} .

Upper Bound (Computation)

If supx log (N∞ (F ◦ x, γ)) � γ−p,

Rlog
n (F) ≤ O(n

p
p+1 ).

Theorem (B., Foster, Roy, 2020)

If p > 0, there exists an F with supx log (N∞ (F ◦ x, γ)) � γ−p and

Rlog
n (F) ≥ Ω

(
n

p
p+2

)
.
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Improved Minimax Bounds Visualized

Our results compared to the previous best upper bound from Foster et al. (2018).
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Advances Underlying Results



Truncation Free

The standard procedure to control log loss uses truncation.

Define the truncated expert class Fδ = {fδ : f ∈ F} for δ ∈ (0, 1/2), where

fδ(x) =


δ f(x) < δ

f(x) δ ≤ f(x) ≤ 1− δ
1− δ f(x) > 1− δ

.

• Observe that for p ∈ [δ, 1− δ], `log(p, y) is 1/δ-Lipschitz.

• It can be shown that Rlog
n (F) ≤ Rlog

n (Fδ) + 2nδ.

Rakhlin and Sridharan (2015) hypothesize this truncation argument is suboptimal,

and pose the open problem of finding a tighter bound without it.

Our argument does not require truncation.
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Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994)

A function F : R→ R is self-concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2.

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a

self-concordant barrier function leads to polynomial iterations for high accuracy.

If F is self-concordant, then ∀x, y ∈ R

F (x)− F (y) ≤ (x− y)F ′(x)− |x− y|
√
F ′′(x) + log

(
1 + |x− y|

√
F ′′(x)

)
.

We use the second term to control the gradient of logarithmic loss.



Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994)

A function F : R→ R is self-concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2.

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a

self-concordant barrier function leads to polynomial iterations for high accuracy.

If F is self-concordant, then ∀x, y ∈ R

F (x)− F (y) ≤ (x− y)F ′(x)− |x− y|
√
F ′′(x) + log

(
1 + |x− y|

√
F ′′(x)

)
.

We use the second term to control the gradient of logarithmic loss.



Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994)

A function F : R→ R is self-concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2.

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a

self-concordant barrier function leads to polynomial iterations for high accuracy.

If F is self-concordant, then ∀x, y ∈ R

F (x)− F (y) ≤ (x− y)F ′(x)− |x− y|
√
F ′′(x) + log

(
1 + |x− y|

√
F ′′(x)

)
.

We use the second term to control the gradient of logarithmic loss.



Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994)

A function F : R→ R is self-concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2.

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a

self-concordant barrier function leads to polynomial iterations for high accuracy.

If F is self-concordant, then ∀x, y ∈ R

F (x)− F (y) ≤ (x− y)F ′(x)− |x− y|
√
F ′′(x) + log

(
1 + |x− y|

√
F ′′(x)

)
.

We use the second term to control the gradient of logarithmic loss.



Self-Concordance

Self-Concordant (Nesterov and Nemirovski, 1994)

A function F : R→ R is self-concordant if

|F ′′′(x)| ≤ 2F ′′(x)3/2.

Logarithmic loss is self-concordant as a function of p.

Utility: In convex optimization, encoding the constraint boundary with a

self-concordant barrier function leads to polynomial iterations for high accuracy.

If F is self-concordant, then ∀x, y ∈ R

F (x)− F (y) ≤ (x− y)F ′(x)− |x− y|
√
F ′′(x) + log

(
1 + |x− y|

√
F ′′(x)

)
.

We use the second term to control the gradient of logarithmic loss.



Chaining Free

Recall our upper bound:

Rlog
n (F) ≤ sup

x
inf
γ>0
{4nγ + c log (N∞ (F ◦ x, γ))} .

• Rather than a single discretization step, it is common to use multiple,

nested discretizations of finer sizes – called chaining.

• Our current approach does not permit such a technique, yet improves on

previous results which do.

• Naive attempts to change our result to allow chaining fail, and we are

actively working on this area.
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Summary

Motivation

• Make probabilistic forecasts without making assumptions about the data

generating process – whether i.i.d. or more sophisticated dependence

structure.

Problem Setup

• Bounding minimax regret for arbitrary expert classes under logarithmic loss.

Contributions

• Improved upper bound for complex classes and provided lower bound.

• Proof technique is truncation free and only requires one step discretization.

Next Steps

• Match upper and lower bounds.

• Obtain bounds that interpolate between stochastic and fully adversarial.
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Open Problem

Infinite Dimensional Linear Prediction

• X = B2, the unit ball in a Hilbert space,

• F = {f(x) = (〈w, x〉+ 1)/2 : w ∈ B2},
• Log-loss can be written as

gt(w) = −yt log(1 + 〈w, xt〉)− (1− yt) log(1− 〈w, xt〉).

Constructive Algorithm (Rakhlin and Sridharan, 2015)

• Follow-the-Regularized-Leader with a self-concordant barrier function gives

Rlog
n (F) ≤ Õ (

√
n).

• This is tighter than any known upper bounds, including ours, and matches

the lower bound.

• It is not well-defined how to apply a concrete algorithm technique like this to

arbitrary expert classes.
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