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Familiar: Hedge Algorithm for Uncountable Experts (Bayesian Inference)
Hedge optimizes a regularized objective...with any prior v we like!

= arg min {E Lo(0) +n TKL( Hy)}
<Lv

Obvious (but not obviously useful): we replace KL with something more generic.

= argmin {]E L:(0) +n;71Df (7| l/)}
<v

KL corresponds to f(x) = x log x and x? corresponds to f(x) = x> — 1 [Alq21].

In this generality we...
e Provide a form for 7, with a generic f.
e Provide a novel local-norm analysis of the regret of playing
e Use these results to prove new guarantees for quantile regret, semi-adversarial
regret, and other applications.
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