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Sequential Prediction with Expert Advice

Let Θ be a generic space of experts (e.g., parameters or models).

For rounds t = 1, . . . ,T :

• Player selects a distribution over experts πt

• Observe losses `t(θ) ∈ [0, 1] for all θ ∈ Θ, generated by the environment
• Incur loss Eθt∼πt `t(θt)

Sequential prediction relies on a measure of the player’s performance that is...

• Relative to the class of experts Θ
• Excess cumulative loss of the player against an expert distribution in hindsight

Regret: RT (q) =
T∑

t=1
[Eθt∼πt `t(θt)− Eθ∼q `t(θ)]

Familiar Setting
• The finite expert setting is when |Θ| = N <∞
• Compete against qT that is a point-mass on the best expert in hindsight
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Primary Contributions

Generic FTRL Analysis
• We provide a novel local-norm analysis of follow-the-regularized-leader on

general (potentially uncountable) expert spaces.
• Our result prescribes how to choose the regularizer for desired regret bounds,
and provides an explicit expression for the FTRL output (i.e., π).

Quantile Regret Guarantees
• Compete against only the top quantile of experts (introduced by [CFH09]).
• We provide the first FTRL algorithm that achieves “root-KL” quantile regret.
• We provide novel lower bounds that show the root-KL guarantees are tight.
• A key application of this novel bound for uncountable expert spaces is we can
compete against the terminal Bayesian posterior.

Semi-Adversarial Regret Guarantees
• Loss distribution is constrained in a structured way (introduced by [BNR20]).
• We achieve improved regret bounds for short time horizons.
• We use root-logarithmic FTRL similarly to our quantile regret algorithm.
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FTRL with Linearly Decomposable Regularizers

Familiar: Hedge Algorithm for Uncountable Experts (Bayesian Inference)
Hedge optimizes a regularized objective...with any prior ν we like!

πt+1 = arg min
π�ν

{
Eθ∼πLt(θ) + η−1

t KL (π‖ ν)
}
.

Obvious (but not obviously useful): we replace KL with something more generic.
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}
.

KL corresponds to f (x) = x log x and χ2 corresponds to f (x) = x2 − 1 [Alq21].

In this generality we...
• Provide a form for πt with a generic f .
• Provide a novel local-norm analysis of the regret of playing πt .
• Use these results to prove new guarantees for quantile regret, semi-adversarial

regret, and other applications.



Novel Quantile Regret Guarantees

Existing Upper Bounds
For N experts, if qε is a point-mass on the (unknown) bεNc best expert, then
non-FTRL algorithms [CFH09; CV10; OP16] achieve

RT (qε) .
√
T log(1/ε) ∀ε, or RT (q) .

√
T (1 + KL (q‖ ν)) ∀q.

Hedge can only achieve this with knowledge of ε or KL (q‖ ν) in advance.
Theorem [NEW] (abNormal Root-KL Bound using FTRL)

Using f (x) =
∫ x

1
√
2 log(1 + s)ds and any ν, for all q � ν

RT (q) ≤ 2
√

(T + 1)(1 + KL (q‖ ν)) +
√
8T .

Taking ν to be uniform over all experts and q to be uniform over the top bεNc
recovers the

√
T log(1/ε) bound for finite experts,

. . . and we’ve significantly generalized to uncountable experts.
Theorem [NEW] (Quantile Lower Bound)
For all N there is a loss distribution s.t. for all ε < 1/4 and T and any algorithm

ERT (qε) ≥
√

(T/2)(log(1/ε)− 2 log 2)− 2 logN − 2 .
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Examples and Applications

Recovering Predictive Variance Bound for Hedge

f (x) = x log x =⇒ RT (q) . KL (q‖ ν)
√∑T

t=1
Predictive Loss Variance ∀q

Novel Prior Variance Bound for χ2

f (x) = x2 − 1 =⇒ RT (q) . χ2(q)
√∑T

t=1
Prior Loss Variance ∀q

Novel Regret against the Terminal Posterior

f (x) ≈ x
√

log(1 + x) =⇒ RT (π̂T ) .
√
T KL ( π̂T‖ ν)

Novel Model Selection Regret for Infinite Classes
Known countable union of model classes Θ = ∪m≥1Θm, prior ν(θ) ∝ [m2 |Θm|]−1:

f (x) ≈ x
√

log(1 + x) =⇒ RT (θ) .
√
T (log |Θm|+ logm) ∀m, θ ∈ Θm
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Semi-Adversarial Paradigm

Real data 6≡ stochastic

←Optimistic Real data 6≡ adversarial←Pessimistic

[BNR20] introduces a spectrum between i.i.d. and adversarial.
Intuitively, fix a “neighbourhood” of distributions D ⊆M([0, 1]N) .
Each data point drawn from an arbitrary distribution in “neighbourhood”.

I0 = {experts that are optimal for some µ ∈ D} N0 = |I0|
∆0 = inf

µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}
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Novel Semi-Adversarial Regret Guarantees

Existing Results [BNR20]

• For every algorithm and D, ERT &
√
T logN0 + (logN)/∆0

• Hedge algorithm can’t do better than ERT & (logN0)
√
T + (logN)/∆0

• The standard tuning even gets ERT & I[N0>1]
√

T log N + (log N)/∆0

• META-CARE algorithm achieves
ERT .

√
T logN0 + I[N0=1](logN)/∆0 + I[N0>1](logN)3/2/∆0

Theorem [NEW] (Semi-Adversarial Regret Bound for FTRL-CARL)

Using f (x) =
∫ x

1 −
√
2 log(1/s)ds,

ERT .
√
T logN0 + (logN)/∆0.

Improved dependence on (N,∆0).

Improvement by an arbitrarily large multiplicative factor for “small” time horizons.
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Technical Details for Generic Bounds

πt+1 = arg min
π�ν

{
Eθ∼πLt(θ) + η−1

t Df (π‖ ν)
}
.

Lemma [NEW] (Generic FTRL Solution)
We provide an analytic expression for πt+1 whenever f ′′ > 0.

Theorem [NEW] (Generic FTRL Local-Norm Bound)
If f ′′ > 0, for all (mt)t∈N there exist µt+1 ∈ Conv(πt , πt+1) s.t. for all q � ν

RT (q) ≤ η−1
T+1Df (q‖ ν)︸ ︷︷ ︸

rate of regret

− η−1
1 min

π�ν
Df (π‖ ν)︸ ︷︷ ︸

lower order

+
T∑

t=1

∫ [ ηt(`t(θ)−mt)2

2f ′′(µt+1(θ)/ν(θ))︸ ︷︷ ︸
local-norm variance

−
(
η−1

t+1 − η
−1
t

)
f
(πt+1(θ)

ν(θ)

)
︸ ︷︷ ︸

regularizer increments

]
ν(dθ)

Interpretation of Terms
• Choice of f removes need to place desired rate of regret in ηt

[OLD] Choose ηt to match rate of regret with local-norm for fixed f
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• Obtain the first root-KL quantile regret bounds with an FTRL algorithm.

• Prove novel lower bounds for quantile regret that show root-KL is tight.

• Design a novel regularizer with improved semi-adversarial regret bounds.

• Applications to variance regret, posterior prediction, and model selection.
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