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Background



A Motivating Example

Stock Market Analogy

• You need to invest your money into a stock portfolio.
• You have access to several market experts that give you advice.
• You regret not having always followed the post hoc best expert’s advice

What assumptions should we make?

A simplifying assumption is that the data are I.I.D. (e.g., Black–Scholes–Merton)

In real life, market is driven in part by non-stochastic forces.

Is assuming adversarial data too pessimistic?

Is the departure from I.I.D.-ness benign? How can we quantify that?
Influence of non-stochastic forces “small” ⇒ maybe.
Meaning of "small" TBD.

Want to maximize profit without having to know what drives the market.
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Sequential Prediction with Expert Advice

Sequential Prediction a.k.a. Online Learning

For rounds t = 1, . . . ,T :
• Predict ŷ(t) ∈ Ŷ based on historical data before time t
• Observe y(t) ∈ Y from the environment
• Incur loss `(ŷ(t), y(t))
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Measuring Performance

The measure of the player’s performance is...

• Relative to the class of N reference experts;
• Given by the excess cumulative loss of the player over the best expert;

Regret: R(T ) =
T∑

t=1
`(ŷ(t), y(t))− min

i∈[N]

T∑
t=1

`(xi (t), y(t))

The prediction problem is online learnable if a player can incur sub-linear regret:

ER(T ) ∈ o(T ).

Where the E is taken with respect to the randomness in the player’s and expert’s
predictions, and the data-generating mechanism for (y(t))t∈N.

(The E may be under a complicated, non-I.I.D. measure.)
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Optimality in the Stochastic and Adversarial Regimes

Stochastic-with-a-Gap
• Expert predictions and data are I.I.D. over time from some distribution.
• There is an expert whose mean loss is ∆ smaller than the others.

Theorem (Gaillard et al. 2014 + Mourtada and Gaïffas 2019)
A constructive algorithm achieves the minimax regret:

ER(T ) � log N
∆ , uniformly bounded in T .

Adversarial
• Compete against expert predictions and data that maximize R(T ).

Theorem (Vovk 1998, see also [FS97; CL06])
A constructive algorithm achieves the minimax regret:

ER(T ) �
√

T log N for all T .

Can a single algorithm be optimal in both settings simultaneously?
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Simultaneous Optimality of Hedge

Can a single algorithm be optimal in both settings simultaneously? Yes! [MG19]

Stochastic-with-a-gap: ER(T ) � (log N)/∆ uniformly in T .

Adversarial: ER(T ) �
√

T log N

The same algorithm, Hedge, was used in both cases!
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Beyond Stochastic and Adversarial

Real data 6≡ stochastic.

← Too optimistic.

Real data 6≡ adversarial. ← Too pessimistic.

We provide a spectrum between stochastic and adversarial;
Intuitively, fix a “neighbourhood” of distributions;
Each data point drawn from an arbitrary distribution in “neighbourhood”.

Stochastic

Adversarial

This work
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Adaptively Minimax Optimal Algorithms

Prediction algorithms should be robust to a range of data generating mechanisms.

Definition BNR20
An algorithm is adaptively minimax optimal for a spectrum of settings if:

• it achieves the minimax optimal performance in each setting; and
• it does not require knowledge of the true setting in advance.

How to formalize this?

• For an abstract range of settings Θ...
• Parameterize the minimax regret in each setting: (R∗θ (T ))θ∈Θ.
• Algorithm satisfies Rθ(T ) ≤ C R∗θ (T ) uniformly in θ for large enough T .
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Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.

This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.

We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...

...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.
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Hedge Algorithm

We will consider only finite expert classes and bounded losses ` : Ŷ × Y → [0, 1].

All explicit algorithms we will consider are proper:
the player randomly selects an expert to emulate at each time.

A proper algorithm assigns probability wi (t) to expert i at time t.

Hedge Algorithm
• Fix learning rate schedule η : N→ R; initialize the weights as uniform; define

`i (t) = `(xi (t), y(t)), Li (t) =
t∑

s=1

`i (s).

• Update weights for each i ∈ [N] using

wi (t) ∝ exp {−η(t)Li (t − 1)} .
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Hedge as Bayesian Inference

wi (t) ∝ exp {−η(t)Li (t − 1)} .

For η(t) = η constant in t, this looks like Bayes rule for a parameter in [N]
• with a flat prior, and
• model likelihood exp{−η`i (t)} for the t-th observation under parameter i .

Variational Formulation
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Our Setting: Time-Homogeneous Convex Constraints

Intuition
Experts and observations may collude.

Realizations (x(t), y(t)) are sampled from an adversarial conditional distribution.

Formal Framework
• Fix a convex set of distributions D ⊆M(ŶN × Y).

• (x(t), y(t)) drawn from an element of D given the history prior to t.
• Time-Homogeneous: D does not depend on t
• Convexity ⇔ environment can flip a coin to select between basic elements of D
• Environment may aim to maximize regret subject to the constraint

• The choice of distribution is made based on outcomes of the previous rounds.
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Examples

Stochastic: D = {µ0},

Adversarial: D =M(ŶN × Y) ← contains point masses!

Adversarial-with-an-E-gap (Mourtada and Gaïffas 2019)
• One expert has at least ∆ > 0 less E loss than the rest on every round.

Neighborhood-of-I.I.D.
• Fix a metric on the space of distributions over ŶN × Y
• Pick any µ0, and let D be a neighborhood of µ0, e.g. Ball(µ0, r) for r > 0
• r → 0 gives the stochastic case, specifically I.I.D. µ0.
• r →∞ gives adversarial case. Smoothly transitions in between as r varies.
• A small neighborhood leads to a slight relaxation of I.I.D.-ness.
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Constraint-Characterizing Quantities

We use quantities to characterize the constraint that:

• are representative of whether the data is “easy” or not;
• yield matching lower and upper bounds on regret.

Effective Experts
I0 = {experts that are optimal in E for some µ ∈ D}
N0 = |I0|

Analogous to the single best expert in the stochastic-with-a-gap setting.

Effective Stochastic Gap
∆0 = inf

µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

Analogous to the gap in the stochastic-with-a-gap setting.
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{µ-expected difference in loss of best expert and best expert not in I0}

Setting: the means for each expert are jointly defined by a parameter α,
N = 5, I0 = {1, 3, 5}, N0 = 3.
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(N0, ∆0) for Examples

Stochastic-with-a-gap: D = {µ0},

• N0 = 1, I0 =
{

i∗ = arg mini∈[N] Eµ0 [`i ]
}
, ∆0 = mini 6=i∗ Eµ0 [`i − `i∗ ]

Adversarial: D =M(ŶN × Y)
• N0 = N, ∆0 = +∞

Adversarial-with-an-E-gap
• All measures where a common expert is better than others in E by ∆ > 0.
• By design, N0 = 1 and ∆0 = ∆.

Neighborhood-of-I.I.D.
• Pick any distribution µ0, and any radius, r ≥ 0. D = Ball(µ0, r)
• Suppose that µ0 has a gaps between all the mean losses.
• N0, ∆0 depend on the radius of the ball...
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Interpreting (N0, ∆−1
0 )

Minimax Regret

ER(T ) �
{√

T log N0 : N0 ≥ 2
(log N)/∆0 : N0 = 1.

D = Ball(µ, radius) w/ Eµ`1 < Eµ`2 < . . .

• N0 non-decreasing with radius
• N0 increases discretely
• ∆−1

0 increases between jumps in N0

• ∆−1
0 resets each time N0 increases

Lexicographical order on (N0,∆−1
0 ) respects “⊆” for nested Ds.

• For nested Ds, larger one is harder.
• (N0,∆−1

0 ) quantifies the difficulty of D
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Performance of Hedge



Hedge Regret Bounds

Consider playing Hedge with η(t) = c/
√

t for any convex D.

Recall:
• N0 is the number of of effective experts,
• ∆0 is the effective stochastic gap.

• T : long run regret accumulation after adapting
• (log N,∆0): adversarial regret over adaptation period of duration O

(
(log N)2

c2∆2
0

)
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Can we do better than Hedge?

Question: If we don’t know N0, can we learn adaptively and minimax optimally?

In particular, is there an algorithm for which...
1. (T ,N0)-dependence matches Hedge with oracle knowledge of N0,
2. (log N,∆0)-dependence optimal for the stochastic case when N0 = 1, and
3. no information is needed about the true setting?

Answer: Yes!

We introduce two new algorithms in order to do this...
• FTRL-CARE, accomplished 1 and 3, but not 2.

• slightly worse dependence on N.
• Meta-CARE, accomplished all 3 by boosting FTRL-CARE with Hedge.
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Improved Algorithms and Bounds



Intuition for Improving on Hedge

Three Key Insights:

1. From our oracle Hedge bound, we want a learning rate ∝
√

(log N0)/t.
2. The regret of Hedge closely depends on the entropy of the weights:

H(w) = −
∑
i∈[N]

wi log(wi ).

3. Worst-case adversary forces weights to concentrate to Unif(I0), so

H(w) ≈ log N0.
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Intuition for Improving on Hedge

Three Key Insights:

1. From our oracle Hedge bound, we want a learning rate ∝
√

(log N0)/t.
2. The regret of Hedge closely depends on the entropy of the weights:

H(w) = −
∑
i∈[N]

wi log(wi ).

3. Worst-case adversary forces weights to concentrate to Unif(I0), so

H(w) ≈ log N0.

What if we could have our learning rate at time t, η(t), look like

η(t) =
√

H(w(t))
t ?



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.

Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
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Follow the Regularized Leader with CARE

Introducing FTRL-CARE

Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
,

which is equivalent to solving the system of equations...

η(t + 1) = c1

√
H(w(t + 1)) + c2

t + 1 and w(t + 1) = exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)}

.

Theorem BNR20
For any convex D, FTRL-CARE achieves

ER(T ) .
√

T log N0 + (log N)3/2

∆0
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CARE if you can, Hedge if you must; or, Meta-CARE for All

FTRL-CARE has adaptively minimax optimal dependence on (T ,N0)...
... but when N0 = 1, it incurs total regret of order (log N)3/2

∆0
instead of (log N)

∆0
.

To be minimax optimal even when N0 = 1, combine Hedge and FTRL-CARE.

Meta-CARE
• Treat the predictions of Hedge and FTRL-CARE as meta-experts...
• Use Hedge on these two meta-experts.
• Incur best regret of the two, plus some excess from meta-learning.
• Excess regret from meta-learning does not affect the order.

Theorem BNR20
For any convex D, Meta-CARE achieves

ER(T ) .
√

T log N0 + I[N0=1]
log N
∆0

+ I[N0≥2]
(log N)3/2

∆0
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Summary



Our Contributions

1. Introduced a spectrum of relaxations of the I.I.D. assumption.
• Indexed by time-homogeneous convex constraints on the environment.
• Interpolate between the pure stochastic and adversarial settings.
• Data that we want to predict won’t be purely adversarial or stochastic.
• We want to know that we do well in intermediate scenarios as well.

2. Characterized the difficulty of learning along the spectrum using N0 and ∆0.
• Defined what it means to be adaptively minimax optimal along the spectrum.

3. Derived regret bounds for Hedge along spectrum from I.I.D. to adversarial.
• In terms of the constraint D via explicit dependence on (N0,∆0).
• Requires oracle knowledge to get minimax optimal dependence on T and N0.
• Therefore Hedge is not adaptively minimax optimal.

4. Provided a new algorithm, Meta-CARE, and corresponding regret bounds.
• Adapts optimally to our full spectrum of relaxations of the I.I.D. assumption.
• ...without using oracle knowledge of N0.
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