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Motivation

Assumptions are used to develop statistical methods and provide guarantees,
leaving us susceptible to sharply degrading performance under failure of assumptions.

Want to act optimally without having to know how data arise.

Can we...
1. quantify the degree to which particular assumptions fail for a decision task?
2. design robust decision methods that adapt to the failure of those assumptions?

Adapting means we simultaneously...
...benefit from assumptions when they hold,
...but still do “as well as possible” when they fail,
...without knowing which case we are in.
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The Role of Online Learning

This semester, many of you have convincingly motivated the study of sequential games:
e.g., GAN training, economic markets, adversarial corruptions, reinforcement learning.

Everyday, decisions are made using statistical methods tuned to “batch data”.

Can sequential methods and analyses help us make more robust decisions?

3/33



The Role of Online Learning

This semester, many of you have convincingly motivated the study of sequential games:
e.g., GAN training, economic markets, adversarial corruptions, reinforcement learning.

Everyday, decisions are made using statistical methods tuned to “batch data”.

Can sequential methods and analyses help us make more robust decisions?

3/33



The Role of Online Learning

This semester, many of you have convincingly motivated the study of sequential games:
e.g., GAN training, economic markets, adversarial corruptions, reinforcement learning.

Everyday, decisions are made using statistical methods tuned to “batch data”.

Can sequential methods and analyses help us make more robust decisions?

3/33



The Role of Online Learning

This semester, many of you have convincingly motivated the study of sequential games:
e.g., GAN training, economic markets, adversarial corruptions, reinforcement learning.

Everyday, decisions are made using statistical methods tuned to “batch data”.

Can sequential methods and analyses help us make more robust decisions?

3/33



Escaping the I.I.D. assumption

I.I.D. is one of the most common assumptions made in statistics.
It is unverifiable, and outside of controlled settings, intuitively false.
At the same time, it is often intuitively “good enough”.

Can we quantify this?
How do we avoid specific dependence assumptions, and both:

1. match improved performance of I.I.D. methods when data ≈ I.I.D.,
2. ensure methods perform “as well as possible” when I.I.D. fails?

Without such assumptions:
1. Data can be fundamentally unpredictable.
2. Absolute, point-in-time notions of “good performance” may not be attainable....

...but good relative, cumulative performance might be possible.
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Defining Performance

The I.I.D. assumption is intrinsic to static notions of performance:

e.g., MSE is the E[loss] of a learned model on a “new, test sample”.

How do we even define “good performance”...
...if we don’t make assumptions linking past and future data?

In order to move away from I.I.D. we leverage the temporal structure of the data...
...and turn to cumulative measures of performance.
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Value Proposition

This adaptivity may seem like an impossible goal...
... but we show that it is possible.

We need to focus on a concrete setting where we have some hope to achieve it.

Sequential Prediction with Expert Advice
bounded loss functions
sequential structure
a relative & cumulative notion of performance (a.k.a. Regret)
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Let’s formalize the setting we’re working in.
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Sequential Prediction with Expert Advice

Sequential Prediction a.k.a. Online Learning

For rounds t = 1, . . . ,T :
• Receive x(t) = (x1(t), . . . , xN(t)) ⊆ Ŷ expert predictions
• Predict ŷ(t) ∈ Ŷ based on historical data before time t
• Observe response data y(t) ∈ Y
• Incur loss `(ŷ(t), y(t)) ∈ [0, 1]
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• Incur loss `(ŷ(t), y(t)) ∈ [0, 1]

8/33



Sequential Prediction with Expert Advice

Sequential Prediction with Expert Advice
For rounds t = 1, . . . ,T :
• Receive x(t) = (x1(t), . . . , xN(t)) ⊆ Ŷ expert predictions
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• Predict ŷ(t) ∈ Ŷ based on historical data before time t and expert predictions
• Observe response data y(t) ∈ Y
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Measuring Performance

Even under I.I.D. assumption, if model not well-specified, we measure performance relatively

Excess risk: R(T ) = E `(θ̂T , yT+1)−min
θ

E `(θ, yT+1)

Without I.I.D. assumption, we cannot look at just the next instance.

The measure of the player’s performance is...

• Relative to the class of N reference experts, in hindsight;
• Given by the excess cumulative loss of the player over the best expert;

Expected Regret: R(T ) = E
[ T∑

t=1
`(ŷ(t), y(t))− min

i∈[N]

T∑
t=1

`(xi (t), y(t))
]

Where the E is taken with respect to the randomness in the player’s and experts’ predictions,
and the data-generating mechanism for (y(t))t∈N.

(The E may be under a complicated, non-I.I.D. measure.)
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`(ŷ(t), y(t))− min

i∈[N]

T∑
t=1

`(xi (t), y(t))
]

Where the E is taken with respect to the randomness in the player’s and experts’ predictions,
and the data-generating mechanism for (y(t))t∈N.

(The E may be under a complicated, non-I.I.D. measure.)
9/33



Cut to the chase: What do we achieve in this setting we just described?

10/33



The Punchline: High-Level Overview of Results

We define a spectrum of adversaries with I.I.D. at one end and adversarial at the other.

The Hedge algorithm was recently shown to be optimal at these two endpoints [MG19].
We show Hedge is suboptimal strictly in between.
Theorem
Hedge is not simultaneously minimax optimal at all settings between I.I.D. and adversarial.
With standard tuning, as soon as data is not I.I.D., Hedge can incur worst-case regret.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem
There is an adaptively minimax optimal algorithm: FTRL-CARL.

FTRL-CARL is like Hedge with the regularizer chosen to optimize a local-norm bound.
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Now that we know what we achieve, let’s formally define our constraint framework.
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Beyond I.I.D. and Adversarial

I.I.D.

Adversarial

This work

.
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Semi-Adversarial Framework: Time-Homogeneous Convex Constraints

Formal Framework

• Fix a convex set of distributions D ⊆M(ŶN × Y).

• (x(t), y(t)) drawn from an element of D given the history prior to t.
• The choice of distribution is made based on outcomes of the previous rounds.

More Details

• Time-Homogeneous: D does not depend on t.
• Convex: environment can flip a coin to select between basic elements of D.
• Environment may aim to maximize regret subject to the constraint.
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• (x(t), y(t)) drawn from an element of D given the history prior to t.

• The choice of distribution is made based on outcomes of the previous rounds.

More Details

• Time-Homogeneous: D does not depend on t.
• Convex: environment can flip a coin to select between basic elements of D.
• Environment may aim to maximize regret subject to the constraint.

14/33



How do we study regret bounds for this constraint framework?
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Adaptively Minimax Optimal Algorithms

Algorithms should be robust to a spectrum of data-generating mechanisms.

Definition
An algorithm is adaptively minimax optimal for a spectrum of settings if:

• it achieves the minimax optimal performance in each setting; and
• it does not require knowledge of the true setting in advance.

Each setting here is a collection of environments we might face.

Minimax optimal ≡ best possible︸ ︷︷ ︸

players policy

worst-case︸ ︷︷ ︸

environment

performance.
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Adapting to tiers of problem hardness

I.I.D.

Adversarial

This work

.

Adaptivity is a well established notion in statistics, especially nonparametrics.

E.g. adapting to smoothness in density estimation.

Do not adapt to a constraint set:
like trying to do as well as if you knew the true density in advance.

We aim to adapt to a notion of hardness for the constraint set.
do as well as if we know the smoothness level in advance.

What governs the hardness of prediction in a semi-adversarial environment?
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Existing Work: Optimality in the I.I.D. and Adversarial Regimes

I.I.D.-with-a-gap data
Experts and data are I.I.D. realizations independent of how the player behaves.
There is an expert whose mean loss is ∆ smaller than the others.

Minimax R(T ) � (logN)/∆

No assumptions on features or responses (adversarial)
Compete against expert predictions and data that maximize R(T ).

Minimax R(T ) �
√
T logN

At the endpoints, logN and ∆ govern regret.
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Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:

• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;

• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts

Analogous to the single best expert in the I.I.D.-with-a-gap setting.
I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap

Analogous to the gap in the I.I.D.-with-a-gap setting.
∆0 = inf

µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Our Work: Constraint-Characterizing Quantities

We want to characterize the hardness of the constraint using quantities that:
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
Analogous to the single best expert in the I.I.D.-with-a-gap setting.

I0 = {experts that are optimal in E for some µ ∈ D} ⊆ [N]
N0 = |I0|

Effective Stochastic Gap
Analogous to the gap in the I.I.D.-with-a-gap setting.

∆0 = inf
µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

19/33



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√
T logN)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have long run regret Θ(

√
T logN0) in (T ,N0)

• We also need to learn which experts are better than the rest by ∆0
• at best we could hope for a fixed regret Θ((logN)/∆0) from the I.I.D. case.

Theorem
FTRL-CARL is adaptively minimax optimal, and achieves

ER(T ) �
√
T logN0︸ ︷︷ ︸

long run cost

+ (logN)/∆0︸ ︷︷ ︸
fixed cost
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Let’s understand N0 and ∆0 using some examples.
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Constraint Example

I0 = {experts that are optimal for some µ ∈ D} N0 = |I0|
∆0 = inf

µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

Setting: the means for each expert are jointly defined by a parameter α,
N = 5, I0 = {1, 3, 5}, N0 = 3.
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Examples I

I.I.D.-with-a-gap: D = {µ0},
• N0 = 1,
• ∆0 = ∆

Adversarial: D =M(ŶN×Y)← contains point masses!
• N0 = N,
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Examples II

Adversarial-with-an-E-gap [MG19]

• All measures where a common expert is better...
... than others in E by ∆ > 0.

• By design, N0 = 1 and ∆0 = ∆.

Non-creative adversary
• The adversary has access to N0 simple I.I.D. data sources,
• it can select from these sources adversarially.
• Assumption free way to model heterogeneous data sources.

Neighborhood-of-I.I.D.
• Pick any distribution µ0, and any radius, r ≥ 0.
• D = Ball(µ0, r)
• N0, ∆0 depend on µ0 and the radius of the ball...
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Now we can get precise about the algorithms we study.
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Follow the Regularized Leader

All explicit algorithms we will consider are proper:
the player randomly selects an expert to emulate at each time.

A proper algorithm assigns probability wi (t) to expert i at time t.

FTRL ≈ penalized empirical risk minimization.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.
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Linearly Decomposable FTRL

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Decompose the regularizer using a learning rate ηt > 0 and a function f : [0, 1]→ R

ψt(w) = η−1t

N∑
i=1

f (wi ).

With appropriate scaling by N, this looks like an f -divergence against a uniform over [N].

[MG19]: Hedge (f (x) = x log x) with ηt =
√

(logN)/t is optimal for I.I.D. and adversarial.

What other f functions are useful?
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Linearly Decomposable FTRL Regret Bounds

Generic local norm bound:
Theorem
For strictly convex f , we have almost surely that

R(T ) ≤ η−1T+1f (1)︸ ︷︷ ︸
regularizer at comparator

+
T∑

t=1

[
ηt
2

N∑
i=1

(`i (t)−mt)2
f ′′(wi (t))︸ ︷︷ ︸

local-norm curvature

−
( 1
ηt+1

− 1
ηt

) N∑
i=1

f (wi (t + 1))︸ ︷︷ ︸
regularizer increment

]

Choosing f · f ′′ ≈ −1 balances the local-norm curvature with the regularizer increment.
This f makes these the correct order without needing

√
logN in ηt .

Introducing FTRL-CARL:
Follow the Regularized Leader with Constraint-Adaptive Root-Logarithmic regularization

w(t + 1) ∈ arg min
w∈simp([N])

〈w , L(t)
〉
−
√
t + 1

∑
i∈[N]

∫ wi

0

√
log(1/s) ds

 .
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Intuition for Improving on Hedge I

Thought Experiment

Imagine we could run Hedge, but with a per-expert “learning rate” that...

1. was ∝
√

(logN0)/t for the effective experts,
2. and at least ∝

√
(logN)/t for the ineffective experts.

How to achieve this? Worst-case adversary forces weights to concentrate to Unif(I0), so

wi (t) � 1/N0 for i ∈ I0,
wi (t) ≺ 1/N else.

This “idealized implicit learning rate” for expert i at time t, ηi (t), could look like

ηi (t) =
√

log(1/wi (t))
t .
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Intuition for Improving on Hedge II

This “idealized implicit learning rate” for expert i at time t, ηi (t), could look like

ηi (t) =
√

log(1/wi (t))
t .

This doesn’t naively fit into the FTRL framework or analysis.
FTRL-CARL with ηt = 1/

√
t approximates Hedge with these implicit learning rates.

The f (x) = −
∫ x
0
√

log(1/s) ds for FTRL-CARL approximates f (x) = −x
√

log(1/x) .
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Regret Bounds

FTRL-CARL is adaptively minimax optimal.
Theorem
For any T and convex D, FTRL-CARL with ηt = 2/

√
t achieves

ER(T ) ≤ min
(√

2T logN0 + 25logN
∆0

,
√
2T logN

)
.

Hedge is not.
Theorem
Hedge with ηt =

√
(logN)/t: for every N0 ≥ 2, there exists a convex D with

ER(T ) &
√
T logN.
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Technical Bits: Minimax Concentration Inequality

When N0 ≥ 2, loss differences are not (sub/super)-martingales.

Need a new way to show concentration of measure:
Lemma
For any prediction algorithm, constraint D, and data-generating mechanism,

sup
i∈[N]\I0

E min
i0∈I0

exp
{
λ

T∑
t=0

[`i0(t)− `i (t)]
}
≤ exp

{
T
[
λ2/2− λ∆0

]}
.

Relies on minimaxity. Not implied by Azuma-Hoeffding for N0 ≥ 2.
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Our Contributions

1. Introduced a spectrum of relaxations of the I.I.D. assumption.
• Defined what it means for data to be nearly I.I.D.
• We want to know that we do well even when I.I.D. fails.

2. Characterized minimax regret under time-homogeneous convex constraints.
• Depends on the number of effective experts, N0,

and the effective stochastic gap, ∆0.

3. Formalized the notion of adaptive minimax optimality.

4. Proved prevailing methods are not adaptively minimax optimal

5. Provided a new algorithm that is adaptively minimax optimal.
• Performs as well as possible relative to the constraint on the adversary,

without knowledge of the constraint.
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Interpreting (N0, ∆−10 )

D = Ball(µ, radius) w/ Eµ`1 < Eµ`2 < . . .

• N0 non-decreasing with radius
• N0 increases discretely
• ∆−10 increases between N0 jumps
• ∆−10 resets at each jump

Lexicographical order on (N0,∆−10 )
• For nested Ds,

larger one is “harder”.

• (N0,∆−10 ) quantifies hardness.

• [D,⊆] 7→ [(N0,∆−10 ), Lex]
is order-preserving
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is order-preserving
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A more refined bound for FTRL-CARL I

Theorem

For any time-homogeneous convex constraint D, FTRL-CARL achieves:
For all T ,

ERT ≤
T∑

t=1

1
2
√
t

√
2logN(t)

0 + 20
N
√

logN
∑

i∈[N]\I0

I[T>Ti ]
∆i

+
√

logN,

where for each i ∈ [N] and each t ∈ N

∆i = inf
µ∈D

max
i ′∈[N]

µ
[
`(i)− `(i ′)

]
Ti =

⌈
8(logN)/∆2

i

⌉
N(t)
0 = |{i ∈ [N] s.t. Ti > t}|
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A more refined bound for FTRL-CARL II

Theorem

For any time-homogeneous convex constraint D, FTRL-CARL achieves:
For all T ,

ERT ≤
√
2T logN,

and if T > T0,

ERT ≤
√
2T logN0 + 4(logN)

N−N0−1∑
j=0

Wj,N,N0
1

∆(j)

+ 20
N
√

logN
∑

i∈[N]\I0

I[T>Ti ]
∆i

+
√

logN,

where Wj,N,N0 = 1√
log N

(√
log(N0 + j + 1)−

√
log(N0 + j)

)
.
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Comparison of Methods
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Optimality of Hedge for IID-with-a-Gap and Adversarial Cases
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