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Background



A Simple Example

Trading Stocks

• You need to invest your money into a stock portfolio.
• You have access to several market experts that give you advice.
• You regret not having always followed the post hoc best expert’s advice

What assumptions should we make?

A simplifying assumption is that the data are I.I.D. (e.g., Black–Scholes–Merton)

In real life, market is driven in part by non-stochastic forces.

Is assuming adversarial data too pessimistic?

Is the departure from I.I.D.-ness benign? How can we quantify that?
Influence of non-stochastic forces “small” ⇒ maybe.
Meaning of "small" TBD.

Want to maximize profit without having to know what drives the market.
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Sequential Prediction with Expert Advice

Sequential Prediction a.k.a. Online Learning

For rounds t = 1, . . . ,T :
• Receive x(t) = (x1(t), . . . , xN(t)) ⊆ Ŷ expert predictions
• Predict ŷ(t) ∈ Ŷ based on historical data before time t
• Observe y(t) ∈ Y from the environment
• Incur loss `(ŷ(t), y(t))
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• Predict ŷ(t) ∈ Ŷ based on historical data before time t and expert predictions
• Observe y(t) ∈ Y from the environment
• Incur loss `(ŷ(t), y(t))
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Measuring Performance

The measure of the player’s performance is...

• Relative to the class of N reference experts;
• Given by the excess cumulative loss of the player over the best expert;

Regret: R(T ) =
T∑

t=1
`(ŷ(t), y(t))− min

i∈[N]

T∑
t=1

`(xi (t), y(t))

The prediction problem is online learnable if a player can incur sub-linear regret:

ER(T ) ∈ o(T ).

Where the E is taken with respect to the randomness in the player’s and expert’s
predictions, and the data-generating mechanism for (y(t))t∈N.

(The E may be under a complicated, non-I.I.D. measure.)
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Optimality in the Stochastic and Adversarial Regimes

Stochastic-with-a-Gap
• Expert predictions and data are I.I.D. over time from some distribution.
• There is an expert whose mean loss is ∆ smaller than the others.

Theorem (Gaillard et al. 2014 + Mourtada and Gaïffas 2019)
A constructive algorithm achieves the minimax regret:

ER(T ) � log N
∆ , uniformly bounded in T .

Adversarial
• Compete against expert predictions and data that maximize R(T ).

Theorem (Vovk 1998, see also [FS97; CL06])
A constructive algorithm achieves the minimax regret:

ER(T ) �
√

T log N for all T .

Can a single algorithm be optimal in both settings simultaneously?
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Can a single algorithm be optimal in both settings simultaneously? Yes!
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Stochastic: ER(T ) � (log N)/∆ uniformly in T .

Adversarial: ER(T ) �
√

T log N.



Simultaneous Optimality of Hedge

Can a single algorithm be optimal in both settings simultaneously? Yes!

0 2500 5000 7500 10000
Time

0

30

60

90

120
Ex

pe
ct

ed
 R

eg
re

t

Adversarial (Hedge)
Stochastic (Hedge)

Proposition: [MG19]
Hedge is optimal in both the stochastic and adversarial settings.

Stochastic: ER(T ) � (log N)/∆ uniformly in T .

Adversarial: ER(T ) �
√

T log N.



Simultaneous Optimality of Hedge

Can a single algorithm be optimal in both settings simultaneously? Yes!

0 2500 5000 7500 10000
Time

0

30

60

90

120
Ex

pe
ct

ed
 R

eg
re

t

Adversarial (Hedge)
Stochastic (Hedge)

Proposition: [MG19]
Hedge is optimal in both the stochastic and adversarial settings.

Stochastic: ER(T ) � (log N)/∆ uniformly in T .

Adversarial: ER(T ) �
√

T log N.



Beyond Stochastic and Adversarial

Real data 6≡ stochastic.

← Too optimistic.

Real data 6≡ adversarial. ← Too pessimistic.

Building upon [RST11], we study a spectrum between stochastic and adversarial.
Intuitively, fix a “neighbourhood” of distributions.
Each data point drawn from an arbitrary distribution in “neighbourhood”.

Stochastic

Adversarial

This work
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Adaptively Minimax Optimal Algorithms

Algorithms should be robust to a spectrum of data-generating mechanisms.

Definition BNR20
An algorithm is adaptively minimax optimal for a spectrum of settings if:

• it achieves the minimax optimal performance in each setting; and
• it does not require knowledge of the true setting in advance.

How to formalize this?

• Given a spectrum of settings Λ...
• If we know θ ∈ Λ in advance, the best achievable performance is R∗θ (T ).
• We want an algorithm that does as well as possible without knowing θ:

Rθ(T ) ≤ C R∗θ (T ) uniformly in θ for large enough T .
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Overview of Our Work

We show Hedge is suboptimal between Stochastic and Adversarial.
This was surprising for us.
We initially set out hoping to prove that Hedge was adaptive to all scenarios.

Theorem BNR20
Without oracle knowledge to tune the learning rate, Hedge is not simultaneously
minimax optimal at all settings between stochastic-with-a-gap and adversarial.

We provide a new algorithm that achieves the minimax rate in all settings...
...without knowledge of which setting prevails!

Theorem BNR20
There is an adaptively minimax optimal algorithm: Meta-CARE.
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Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...

• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”

• so we might strive to have regret Θ(
√

T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...

• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case

• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Main Result

Motivating Intuition

• In the adversarial case the minimax optimal regret is Θ(
√

T log N)

• If we know only N0 of the experts can ever be “the best”, and which ones, ...
• we could restrict an adversarially optimal algorithm to the “best experts”
• so we might strive to have regret Θ(

√
T log N0) in (T ,N0)

• If we know one expert is better than the rest by ∆0, but not which it is...
• then we are almost in the stochastic-with-a-gap case
• so we might hope for regret Θ((log N)/∆0)

Theorem BNR20
The adaptively minimax optimal rate of regret, which Meta-CARE achieves, is

ER(T ) �
{√

T log N0 N0 ≥ 2
(log N)/∆0 N0 = 1.



Relaxing the I.I.D. Assumption



Our Setting: Time-Homogeneous Convex Constraints

Intuition
Experts and environment may collude.
Realizations (x(t), y(t)) are sampled from an adversarial conditional distribution.

Formal Framework

• Fix a convex set of distributions D ⊆M(ŶN × Y).
• (x(t), y(t)) drawn from an element of D given the history prior to t.

• The choice of distribution is made based on outcomes of the previous rounds.

More Details

• Time-Homogeneous: D does not depend on t.
• Convex: environment can flip a coin to select between basic elements of D.
• Environment may aim to maximize regret subject to the constraint.
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Constraint-Characterizing Quantities

The set D may be complex and difficult to describe for a particular application.

We want to characterize the constraint using quantities that:
• simplify the abstract complexity of the constraint;
• differentiate whether the data is “easy” or not, independent of algorithms;
• yield matching lower and upper bounds on regret.

Effective Experts
I0 = {experts that are optimal in E for some µ ∈ D}
N0 = |I0|

Analogous to the single best expert in the stochastic-with-a-gap setting.

Effective Stochastic Gap
∆0 = inf

µ∈D
{µ-expected difference in loss of best expert and best expert not in I0}

Analogous to the gap in the stochastic-with-a-gap setting.
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Examples

Stochastic-with-a-gap: D = {µ0},
• N0 = 1, I0 =

{
i∗ = arg mini∈[N] Eµ0 [`i ]

}
, ∆0 = mini 6=i∗ Eµ0 [`i − `i∗ ]

Adversarial: D =M(ŶN × Y) ← contains point masses!
• N0 = N, ∆0 = +∞

Adversarial-with-an-E-gap (Mourtada and Gaïffas 2019)
• All measures where a common expert is better than others in E by ∆ > 0.
• By design, N0 = 1 and ∆0 = ∆.

Neighborhood-of-I.I.D.
• Pick any distribution µ0, and any radius, r ≥ 0. D = Ball(µ0, r)
• Suppose that µ0 has a gap between each of the mean losses.
• N0, ∆0 depend on the radius of the ball...
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Adversarial: D =M(ŶN × Y) ← contains point masses!
• N0 = N, ∆0 = +∞

Adversarial-with-an-E-gap (Mourtada and Gaïffas 2019)
• All measures where a common expert is better than others in E by ∆ > 0.
• By design, N0 = 1 and ∆0 = ∆.

Neighborhood-of-I.I.D.
• Pick any distribution µ0, and any radius, r ≥ 0. D = Ball(µ0, r)
• Suppose that µ0 has a gap between each of the mean losses.
• N0, ∆0 depend on the radius of the ball...



Examples

Stochastic-with-a-gap: D = {µ0},
• N0 = 1, I0 =

{
i∗ = arg mini∈[N] Eµ0 [`i ]

}
, ∆0 = mini 6=i∗ Eµ0 [`i − `i∗ ]
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← contains point masses!
• N0 = N, ∆0 = +∞

Adversarial-with-an-E-gap (Mourtada and Gaïffas 2019)
• All measures where a common expert is better than others in E by ∆ > 0.
• By design, N0 = 1 and ∆0 = ∆.

Neighborhood-of-I.I.D.
• Pick any distribution µ0, and any radius, r ≥ 0. D = Ball(µ0, r)
• Suppose that µ0 has a gap between each of the mean losses.
• N0, ∆0 depend on the radius of the ball...



Examples

Stochastic-with-a-gap: D = {µ0},
• N0 = 1, I0 =

{
i∗ = arg mini∈[N] Eµ0 [`i ]

}
, ∆0 = mini 6=i∗ Eµ0 [`i − `i∗ ]
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• ∆−1
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0 )
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“harder” to learn.

• (N0,∆−1
0 ) quantifies the

difficulty.
• How does regret change with ∆0?
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Performance of Hedge



Hedge Algorithm

We will consider only finite expert classes and bounded losses ` : Ŷ × Y → [0, 1].

All explicit algorithms we will consider are proper:
the player randomly selects an expert to emulate at each time.

A proper algorithm assigns probability wi (t) to expert i at time t.

Hedge Algorithm
• Fix learning rate schedule η : N→ R; initialize the weights as uniform; define

`i (t) = `(xi (t), y(t)), Li (t) =
t∑

s=1

`i (s).

• Update weights for each i ∈ [N] using

wi (t) ∝ exp {−η(t)Li (t − 1)} .
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Hedge Regret Bounds

Consider playing Hedge with η(t) = c/
√

t for any convex D.

Recall:
• N0 is the number of of effective experts,
• ∆0 is the effective stochastic gap.

• T : long run regret accumulation after adapting
• (log N,∆0): adversarial regret over adaptation period of duration O

(
(log N)2

c2∆2
0

)
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Recall:
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• ∆0 is the effective stochastic gap.

Theorem BNR20
Taking c ∝

√
log N gives

ER(T ) .
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T log N + log N
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Can we do better than Hedge?

Question: If we don’t know N0, can we learn adaptively and minimax optimally?

In particular, is there an algorithm for which...
1. (T ,N0)-dependence matches Hedge with oracle knowledge of N0,
2. (log N,∆0)-dependence optimal for the stochastic case when N0 = 1, and
3. no information is needed about the true setting?

Answer: Yes!

We introduce two new algorithms in order to do this...
• FTRL-CARE, accomplished 1 and 3, but not 2.

• slightly worse dependence on N.
• Meta-CARE, accomplished all 3 by boosting FTRL-CARE with Hedge.
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Improved Algorithms and Bounds



Intuition for Improving on Hedge

Three Key Insights:

1. From our oracle Hedge bound, we want a learning rate ∝
√

(log N0)/t.
2. The regret of Hedge closely depends on the entropy of the weights:

H(w) = −
∑
i∈[N]

wi log(wi ).

3. Worst-case adversary forces weights to concentrate to Unif(I0), so

H(w) ≈ log N0.
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Intuition for Improving on Hedge

Three Key Insights:

1. From our oracle Hedge bound, we want a learning rate ∝
√

(log N0)/t.
2. The regret of Hedge closely depends on the entropy of the weights:

H(w) = −
∑
i∈[N]

wi log(wi ).

3. Worst-case adversary forces weights to concentrate to Unif(I0), so

H(w) ≈ log N0.

What if we could have our learning rate at time t, η(t), look like

η(t) =
√

H(w(t))
t ?



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.

Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) .

That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:

Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.



Follow the Regularized Leader

FTRL is a fundamental online linear optimization algorithm.
Parametrized by a sequence of regularizers (ψt)t∈N ⊆ simp([N])→ R,

w(t + 1) = arg min
w∈simp([N])

(〈
w , L(t)

〉
+ ψt+1(w)

)
.

Hedge corresponds to ψt+1(w) = − H(w)
η(t+1) . That is,

exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)} = arg min

w∈simp([N])

(〈
w , L(t)

〉
− H(w)
η(t + 1)

)
.

Introducing FTRL-CARE:
Follow the Regularized Leader with Constraint-Adaptive Root-Entropic regularization

w(t + 1) ∈ arg min
w∈simp([N])

(〈
w , L(t)

〉
−
√

t+1
c1

√
H(w) + c2

)
.
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Proof Details

Proof Technique 1: FTRL-CARE looks like Hedge with oracle knowledge.

Lemma BNR20
FTRL-CARE is equivalent to solving the following system of equations:

η(t + 1) = c1

√
H(w(t + 1)) + c2

t + 1 and w(t + 1) = exp {−η(t + 1)L(t)}∑
i∈[N] exp {−η(t + 1)Li (t)}

.

Proof Technique 2: Concentration of measure holds under our relaxation of i.i.d.

Lemma BNR20
For any prediction algorithm, constraint D, and data-generating mechanism,

sup
i∈[N]\I0

E min
i0∈I0

exp

{
λ

T∑
t=0

[`i0 (t)− `i (t)]

}
≤ exp

{
T
[
λ2/2− λ∆0

]}
.
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Summary



Our Contributions

1. Introduced a spectrum of relaxations of the I.I.D. assumption.
• Data that we want to predict won’t be purely adversarial or stochastic.
• We want to know that we do well in intermediate scenarios as well.

2. Characterized minimax regret under time-homogeneous convex constraints.
• Depends on the number of effective experts, N0,

and the effective stochastic gap, ∆0.

3. Formalized the notion of adaptive minimax optimality.

4. Proved Hedge is not adaptively minimax optimal
along spectrum from I.I.D. to adversarial.
• Requires oracle knowledge to get minimax optimal dependence on T and N0.

5. Provided a new algorithm, Meta-CARE that is adaptively minimax optimal.
• Performs as well as possible relative to the constraint on the adversary,

without knowledge of the constraint.
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