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COPYRIGHT

I have compiled these notes to help me while teaching STA347 at the University of Toronto, and
provided them to the students as a record of what we cover in lecture. As such, they are intended
to supplement the lectures, and should not be treated as the sole reference to study from. All of the
results in these notes, besides the mistakes, can be more-or-less found somewhere in four main texts.

The main material follows the structure of Rosenthal (2006), with the measure theoretic aspects
sanitized away, while Durrett (2013) is also used as a reference for rigorous results (primarily his
treatment of the Weak LLN). Meanwhile, both Ross (2007) (especially chapters 4 and 8) and Rice
(2007) are used to provide motivating examples and allow the students to follow along in a more
elementary text.

Durrett, R. (2013). Probability: Theory and Examples, Fourth edition. Cambridge University Press.

Rice, J. (2007). Mathematical statistics and data analysis, Third edition. Cengage Learning.

Rosenthal, J. (2006). A first look at rigorous probability theory, Second edition. World Scientific.

Ross, S. (2007). Introduction to probability models, Tenth edition. Academic Press.

While the material individually belongs to these texts respectively, you may not reproduce or dis-
tribute these notes as a collection without the permission of the author, Blair Bilodeau.
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LECTURE 1

PROBABILITY BASICS

1.1 Set Theory Fundamentals

Definition 1.1.1 (Convergence of Real-Valued Sequences).
A sequence (xn)∞n=1 ⊆ R converges to x if

∀ε > 0 ∃N ∈ N n > N =⇒ |xn − x| < ε. (1.1)

A sequence (fn)∞n=1 ⊆ RX converges pointwise to f if

∀ε > 0 ∀x ∈ X ∃Nx ∈ N n > Nx =⇒ |fn(x)− f(x)| < ε. (1.2)

A sequence (fn)∞n=1 ⊆ RX converges uniformly to f if

∀ε > 0 ∃N ∈ N ∀x ∈ X n > N =⇒ |fn(x)− f(x)| < ε. (1.3)

Definition 1.1.2 (Limiting Processes).
Let A ⊆ R be a set.

u = supA ⇐⇒ ∀ε > 0 ∃x ∈ A u− ε < x and ∀x ∈ A x ≤ u.

v = inf A ⇐⇒ ∀ε > 0 ∃x ∈ A u+ ε > x and ∀x ∈ A x ≥ u.
(1.4)

Let (xn) ⊆ R be a sequence.

lim sup
n→∞

xn = lim
n→∞

sup
m≥n

xm = inf
n≥0

sup
m≥n

xm.

lim inf
n→∞

xn = lim
n→∞

inf
m≥n

xm = sup
n≥0

inf
m≥n

xm.
(1.5)

Definition 1.1.3 (Function Limits).
For any function f : R→ R,

f(x−) = lim
y↑x

f(y) = L ⇐⇒ ∀ε > 0 ∃δ > 0 ∀y ∈ (x− δ, x) |f(y)− L| < ε.

f(x+) = lim
y↓x

f(y) = L ⇐⇒ ∀ε > 0 ∃δ > 0 ∀y ∈ (x, x+ δ) |f(y)− L| < ε.

lim
y→x

f(y) = L ⇐⇒ f(x−) = f(x+) = L.

(1.6)

1.2 Probability Measures

Definition 1.2.1. A sample space Ω is any non-empty set.

Example 1.2.2. The sample space contains “all the states of the world”.
Coin flipping: Ω = {H,T}.
Weather: {hot, cold, mild} × {wet, dry}.
Extreme example: Ω = {all locations of every molecule on Earth}.
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Definition 1.2.3. For a sample space Ω, we say P is a probability measure if the following hold:
i) ∀E ⊆ Ω, 0 ≤ P(E) ≤ 1, that is, P : P(Ω)→ [0, 1];

ii) P(Ω) = 1;
iii) ∀E1, E2, . . . ⊆ Ω such that Ei ∩ Ej = ∅ ∀ i 6= j,

P
( ∞⋃
i=1

Ei

)
=
∞∑
i=1

P(Ei). (1.7)

Remark. If this truly has to hold for all subsets of Ω, it may be impossible for such a P to exist. To
define exactly which subsets we want P to satisfy these axioms for would require more advanced math-
ematics (the subject of measure theory). For this class, we will not worry about these technicalities,
and assume P is defined for all subsets of Ω.

Example 1.2.4. Probabilities of coin flipping. P(H) = P(T ) = 1/2. P(H ∪ T ) = 1/2 + 1/2 = 1.

Example 1.2.5 (Uniform/Lebesgue measure). Let Ω = [L,U ] for some L < U ∈ R. Define
P([a, b)) = b−a

U−L when L ≤ a ≤ b ≤ U .
Proof. In this class we can assume this exists.

Proposition 1.2.6. The following properties are satisfied by any probability measure P.
1. ∀E ⊆ Ω,P(Ec) = 1− P(E);
2. P(∅) = 0;
3. ∀E,F ⊆ Ω such that E ⊆ F , P(E) ≤ P(F );
4. ∀E,F ⊆ Ω, P(E ∪ F ) = P(E) + P(F )− P(E ∩ F );
5. ∀E,F ⊆ Ω, P(E ∩ F ) = P(E) + P(F )− P(E ∪ F );
6. ∀E,F ⊆ Ω, P(F \ E) = P(F )− P(F ∩ E).

Proof. Exercise (review from STA257).

Lemma 1.2.7. Consider a sequence of sets Ei and set E ⊆ ⋃∞i=1Ei. Then,

P(E) ≤
∞∑
i=1

P(Ei) (1.8)

Proof. Let Fi = Ei ∩ E. Observe that E = ⋃∞
i=1 Fi and Fi ⊆ Ei so P(Fi) ≤ P(Ei). Further,

define G1 = F1, and Gk = Fk ∩
(⋃k−1

i=1 Fi
)c

for k ≥ 2. Observe that the set of Gi’s are disjoint with⋃∞
i=1Gi = ⋃∞

i=1 Fi = E, and Gi ⊆ Fi. Then,

P(E) = P
( ∞⋃
i=1

Gi

)
=
∞∑
i=1

P(Gi) ≤
∞∑
i=1

P(Fi) ≤
∞∑
i=1

P(Ei). (1.9)

Lemma 1.2.8. Let P be the uniform measure on [0, 1]. Then P(E) = 0 for any countable set E.
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Proof. Let E = {xi}∞i=1. Fix ε > 0 and define Ei(ε) = [xi − 2−iε, xi + 2−iε). Observe that E ⊆⋃∞
i=1Ei(ε). Thus,

P(E) ≤
∞∑
i=1

P(Ei(ε)) =
∞∑
i=1

[xi + 2−iε− xi + 2−iε] = 2ε
∞∑
i=1

2−i = 2ε. (1.10)

Since ε was arbitrary, P(E) = 0.

1.3 Independence

Definition 1.3.1. Events E1, . . . , En ⊆ Ω are independent with respect to a probability measure P
if for each I ⊆ [n]

P
(⋂
i∈I

Ei

)
=
∏
i∈I

P(Ei). (1.11)

Proposition 1.3.2. If E1, . . . , En are independent, then Ec
1, . . . , En are independent.

Proof. Fix I ⊆ [n]. If 1 /∈ I, then clearly

P
(⋂
i∈I

Ei

)
=
∏
i∈I

P(Ei). (1.12)

If 1 ∈ I, then define I ′ = I \ {1}.

P

Ec
1 ∩

⋂
i∈I′

Ei

 = P

⋂
i∈I′

Ei \ E1


= P

⋂
i∈I′

Ei

− P

E1 ∩
⋂
i∈I′

Ei


=
∏
i∈I′

P(Ei)−
∏
i∈I

P(Ei)

= [1− P(E1)]
∏
i∈I′

P(Ei)

= P(Ec
1)
∏
i∈I′

P(Ei).

(1.13)

Definition 1.3.3. An infinite collection of events {Eα : α ∈ I} are independent if for any finite
subset J ⊆ I, the events {Ei : i ∈ J } are independent.

1.4 Random Variables

Definition 1.4.1. Given a sample space Ω, a function X : Ω −→ R is a random variable.

Example 1.4.2. Coin flipping. X(H) = 1, X(T ) = 0.
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Definition 1.4.3. Random variables X1, . . . , Xn are independent with respect to a measure P if for
all sets A1, . . . , An ⊆ R,

P
(

n⋂
i=1
{Xi ∈ Ai}

)
=

n∏
t=1

P(Xi ∈ Ai). (1.14)

Definition 1.4.4. An infinite collection of random variables {Xα : α ∈ I} are independent if for any
finite subset J ⊆ I, the random variables {Xi : i ∈ J } are independent.

1.5 Distributions

Lemma 1.5.1. A random variable X and probability measure P induce a probability measure µ on
R defined by

µ(A) = P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}) (1.15)
for any A ⊆ R.
Proof. µ(B) ∈ [0, 1] is trivial since P is a measure. Also, since X(ω) ∈ R for all ω ∈ Ω, µ(R) =
P(Ω) = 1. Finally, consider disjoint A1, A2, . . . ⊆ R, and define Ei = {ω : X(ω) ∈ Ai}. Since X is a
function, it is impossible for X(ω) = a and X(ω) = b when a 6= b, so the Ei’s are also disjoint. Then,

µ

( ∞⋃
i=1

Ai

)
= P

(
X(ω) ∈

∞⋃
i=1

Ai

)
= P

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

P(Ei) =
∞∑
i=1

µ(Ai). (1.16)

Definition 1.5.2. A random variable X and measure P generate the cumulative distribution function
defined by

F (x) = µ((−∞, x]) = P(X ≤ x). (1.17)

Theorem 1.5.3. A distribution function F for a random variable X uniquely defines the measure µ.
Proof. Outside the scope of this class.

Example 1.5.4. Uniform. P is uniform on [0, 1] and X(ω) = ω. For x ∈ [0, 1],

F (x) = µ([0, x)) = P(X(ω) ∈ [0, x)) = P(ω ∈ [0, x)) = x. (1.18)

Theorem 1.5.5. A distribution function satisfies the following properties:
i) For all x ≤ y ∈ R, F (x) ≤ F (y);

ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;
iii) F is right-continuous.

Proof. i) follows from monotonicity of measure, while ii) and iii) require a result from next lecture.

Definition 1.5.6. The inverse CDF of a random variable X is defined by

F−1(y) = sup{x : F (x) < y}. (1.19)
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Theorem 1.5.7. If F satisfies properties i) to iii), it is the CDF of some random variable.
Proof. Let U ∼ Uniform(0, 1) and define the random variable Y (ω) = F−1(U(ω)). Consider arbitrary
x, t ∈ [0, 1].

First, suppose F−1(t) > x. That is, sup{y : F (y) < t} > x, so F (x) < t since F is non-decreasing.

Next, suppose F−1(t) ≤ x. By the same logic, F (x+δ) ≥ t for any δ > 0. Since F is right continuous,
this gives F (x) ≥ t.

These combined have given that {t : F−1(t) ≤ x} = {t : t ≤ F (x)}. Thus,

P(Y ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), (1.20)

so Y is a random variable with the CDF F .

Lemma 1.5.8. If F is a CDF, it can only have countably many discontinuities.
Proof. Let D be the set of discontinuities of F . If x ∈ D, then F (x−) < F (x+), so there exists a
rational qx ∈ (F (x−), F (x+)). Further, since F is non-decreasing, for x 6= y ∈ D, qx 6= qy, so each
x 7→ qx is injective, and thus |D| ≤ |Q|. It remains to observe that Q is countable.

Definition 1.5.9. A random variable has a density function f : R→ R+ if for all x ∈ R,

F (x) =
∫ x

−∞
f(y)dy. (1.21)

Lemma 1.5.10. If X has a density function, P(X = x) = 0 for all x ∈ R.
Proof.

P(X = x) = lim
δ→0

P(x− δ < X ≤ x+ δ) = lim
δ→0

∫ x+δ

x−δ
f(y)dy = 0. (1.22)

Definition 1.5.11. We define the joint distribution function of a random vector X = (X1, . . . , Xn)
by

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn), (1.23)

using the notation P(A,B) def= P(A ∩B).

Theorem 1.5.12. A joint distribution function F : Rn → R satisfies the following properties:
i) If (x1, . . . , xn) and (x′1, . . . , x′n) satisfy xi ≤ x′i for all i ∈ [n], F (x1, . . . , xn) ≤ F (x′1, . . . , x′n);

ii) limxi→−∞ F (x1, . . . , xn) = 0 for all i ∈ [n] and limx1→∞,...,xn→∞ F (x1, . . . , xn) = 1;
iii) limh→0+ F (x1 + h, . . . , xn) = · · · = limh→0+ F (x1, . . . , xn + h) = F (x1, . . . , xn).

Proof. Analogous to the proof of Theorem 1.5.5.

Definition 1.5.13. A random vector has a joint density function f : Rn → R+ if ∀(x1, . . . , xn) ⊆ Rn

F (x1, . . . , xn) =
∫ xn

−∞
· · ·

∫ x1

−∞
f(y1, . . . , yn)dy1 · · · dyn. (1.24)
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Theorem 1.5.14. Random variables X1, . . . , Xn with CDFs F1, . . . , Fn are independent if and only
if

F (x1, . . . , xn) =
n∏
t=1

Fi(xi) ∀(x1, . . . , xn) ⊆ Rn. (1.25)

Proof. The reverse direction is obvious by definition. The forward definition is outside the scope of
this class.
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1.6 Exercises

Exercise 1.1. Prove Proposition 1.2.6.

Exercise 1.2. Find an example of an Ω, P, and sets A,B,C such that

P(A ∩B ∩ C) = P(A)P(B)P(C)

but A,B,C are not independent. Hint: Ω does not need to have more than 4 elements.

Exercise 1.3. Prove that if {Aα}α∈I is independent then so is {Acα}α∈I .

Exercise 1.4. Prove that if X and Y are independent, then X and f(Y ) are independent for any
function f : R→ R.

Exercise 1.5. Let P be the uniform measure on [0, 1]. Define A = (a, b) and B = (c, d), with a < c.
State necessary and sufficient conditions for A and B to be independent.

Exercise 1.6. Review the exponential family of distributions (note this is not just the exponential
distribution, but the exponential family).

7 © Blair Bilodeau



LECTURE 2

CONVERGENCE

2.1 Tail Events

Proposition 2.1.1 (Continuity of Measure.). If {An} ↗ A or {An} ↘ A, then limn→∞ P(An) =
P(A).
Proof. Suppose {An} ↗ A, and by convention let A0 = ∅. Define B1 = A1 and Bn = An ∩ Acn−1 for
n ≥ 2. Observe that

n⋃
m=1

Bm =
n⋃

m=1
(Am ∩ Acm−1)

=
n⋃

m=1
Am ∩

n⋃
m=1

Acm−1

= An ∩ Ac0
= An.

(2.1)

Then,
P(A) = P(

∞⋃
m=1

Bm)

=
∞∑
m=1

P(Bm)

= lim
n→∞

n∑
m=1

P(Bm)

= lim
n→∞

P(
n⋃

m=1
Bm)

= lim
n→∞

P(An).

(2.2)

If {An} ↘ A, then {Acn} ↗ Ac, so

P(A) = 1− P(Ac)
= 1− lim

n→∞
P(Acn)

= 1− lim
n→∞

[1− P(An)]

= lim
n→∞

P(An).

(2.3)

Example 2.1.2. Uniform measure and An = [0, 1− 1/n].

Example 2.1.3.

An =
Ω, n odd
∅, n even

. (2.4)
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Theorem 1.5.5. A distribution function satisfies the following properties:
i) For all x ≤ y ∈ R, F (x) ≤ F (y);

ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;
iii) F is right-continuous.

Proof. It remains to prove ii) and iii). Suppose xn ↑ ∞ and yn ↓ −∞, so that {ω : X(ω) <
xn} ↗ {ω : X(ω) < ∞} and {ω : X(ω) < yn} ↘ {ω : X(ω) < −∞}. By continuity of measure,
F (xn) ↑ P(X(ω) < ∞) = 1 and F (yn) ↓ P(X(ω) < −∞) = 0. Since these were arbitrary sequences,
ii) holds.

Now, fix an arbitrary x ∈ R and suppose xn ↓ x. By the same logic, {ω : X(ω) < xn} ↘ {ω : X(ω) <
x}, so F (xn) ↓ F (x), showing iii).

Definition 2.1.4. Consider a sequence A1, A2, . . . ⊆ Ω. Define the tail events by

lim sup
n−→∞

An = {An i.o.} =
∞⋂
n=1

∞⋃
k=n

Ak (2.5)

and
lim inf
n−→∞

An = {An a.a.} =
∞⋃
n=1

∞⋂
k=n

Ak. (2.6)

Corollary 2.1.5. P(An i.o.) = 1− P(Acn a.a.).

Proposition 2.1.6.

P(An a.a.) ≤ lim inf
n−→∞

P(An) ≤ lim sup
n−→∞

P(An) ≤ P(An i.o.). (2.7)

Proof. Observe that ⋂∞k=nAk ⊆
⋂∞
k=n+1Ak for all n. So,

P(An a.a.) = P

( ∞⋃
n=1

∞⋂
k=n

Ak

)

= lim
n→∞

P

( ∞⋂
k=n

Ak

)

= lim inf
n−→∞

P

( ∞⋂
k=n

Ak

)
≤ lim inf

n−→∞
P (An) .

(2.8)

The second inequality is by definition. The third inequality is an exercise.

Theorem 2.1.7 (Borel-Cantelli Lemma).
i) If ∑∞n=1 P(An) <∞, then P(An i.o.) = 0;

ii) If ∑∞n=1 P(An) =∞ and {An} are independent, then P(An i.o.) = 1.
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Proof. For i), observe that ⋃∞k=n+1 Ak ⊆
⋃∞
k=nAk for all n. Thus,

P(An i.o.) = P
( ∞⋂
n=1

∞⋃
k=n

Ak

)

= lim
n→∞

P
( ∞⋃
k=n

Ak

)

≤ lim
n→∞

∞∑
k=n

P(Ak)

= 0.

(2.9)

For ii), observe that ⋂∞k=nA
c
k ⊆

⋂∞
k=n+1A

c
k for all n. Thus,

1− P(An i.o.) = P((An i.o.)c)

= P
( ∞⋃
n=1

∞⋂
k=n

Ack

)

= lim
n→∞

P
( ∞⋂
k=n

Ack

)

= lim
n→∞

∞∏
k=n

[1− P(Ak)]

≤ lim
n→∞

∞∏
k=n

e−P(Ak)

= lim
n→∞

e−
∑∞

k=n P(Ak)

= lim
n→∞

0

= 0.

(2.10)

Example 2.1.8 (converse does not hold for i)). Uniform measure and An = [0, 1/n]. Then,

An i.o. =
∞⋂
n=1

∞⋃
k=n

[0, 1/k]

= {0},
(2.11)

but ∑∞n=1 P(An) = ∑∞
n=1 1/n =∞.

Example 2.1.9 (independence is needed for ii)). Define c1, c2, . . . such that ci is a fair coin toss.
Let A1, A2, . . . be such that Ai = {c1 = 1}. Then, ∑∞n=1 P(An) = ∑∞

n=1 1/2 = ∞ and P(An i.o.) =
P(An) = 1/2.

2.2 Types of Convergence

Definition 2.2.1. A sequence of random variables Xn converges almost surely to X if
P( lim

n→∞
Xn = X) = 1, (2.12)
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and is denoted by Xn −→ X a.s.

Proposition 2.2.2. If for all ε > 0, P(|Xn −X| > ε i.o.) = 0, then Xn −→ X a.s.
Proof. Consider that limn→∞Xn(ω) = X(ω) if and only if for all ε > 0, |Xn(ω)−X(ω)| < ε for all
but finitely many n. Thus,

P
(

lim
n→∞

Xn = X
)

= P(∀ε > 0, |Xn(ω)−X(ω)| < ε a.a.) = 1− P(∃ε > 0, |Xn(ω)−X(ω)| ≥ ε i.o.).
(2.13)

Next,
P(∃ε > 0, |Xn(ω)−X(ω)| ≥ ε i.o.) ≤ P(∃ε ∈ Q+, |Xn(ω)−X(ω)| ≥ ε i.o.)

≤
∑
ε∈Q+

P(|Xn(ω)−X(ω)| ≥ ε i.o.)

= 0.

(2.14)

Corollary 2.2.3. If for all ε > 0, ∑∞n=1 P(|Xn(ω)−X(ω)| ≥ ε) <∞, Xn −→ X a.s.
Proof. Borel-Cantelli combined with the assumption implies the hypothesis of Proposition 2.2.2.

Definition 2.2.4. A sequence of random variables Xn converges in probability to X if for all ε > 0

lim
n→∞

P(|Xn −X| ≤ ε) = 1, (2.15)

and is denoted by Xn
P−→ X.

Proposition 2.2.5. If Xn −→ X a.s. then Xn
P−→ X.

Proof. Fix ε > 0 and let En = {ω : ∃m ≥ n, |Xm(ω)−X(ω)| ≥ ε}. Observe that En+1 ⊆ En, and if
ω ∈ ⋂∞n=1En then Xn(ω) 6→ X(ω). Thus, using continuity of probability,

lim
n→∞

P(|Xn(ω)−X(ω)| ≥ ε) ≤ lim
n→∞

P(En)

= P
( ∞⋂
n=1

En

)
≤ P(Xn 6→ X)
= 0.

(2.16)

Example 2.2.6. Xn independent with P(Xn = 1) = 1/n, P(Xn = 0) = 1− 1/n. For all ε > 0,

P(Xn > ε) = 1/n −→ 0. (2.17)

So, Xn
P−→ 0. But, P (Xn = 1 i.o.) = 1, so P (Xn −→ 0) = 0.

Theorem 2.2.7. If Xn
P−→ X, there exists a subsequence such that Xnk −→ X a.s.
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Proof. By definition, for each k ∈ N, there exists nk such that for n ≥ nk

P(|Xn −X| > 2−k) ≤ 2−k. (2.18)

Further, choose these such that nk+1 ≥ nk, and define the sets

Ak = {ω : |Xnk(ω)−X(ω)| > 2−k}. (2.19)

Clearly,
∞∑
k=1

P(Ak) ≤
∞∑
k=1

2−k <∞, (2.20)

so by Borel Cantelli P(Ak i.o.) = 0. Finally, observe that |Xnk(ω)−X(ω)| > 2−k only finitely many
times implies Xnk(ω) −→ X(ω), so

1 = P[(Ak i.o.)c] ≤ P(Xnk −→ X). (2.21)

Theorem 2.2.8 (Continuous Mapping Theorem). If f is a continuous function then
i) Xn −→ X a.s. implies that f(Xn) −→ f(X) a.s.;

ii) Xn
P−→ X implies that f(Xn) P−→ f(X);

Proof.
i) f continuous means that Xn(ω)→ X(ω) implies f(Xn(ω))→ f(X(ω)), so

1 = P(Xn → X) ≤ P(f(Xn)→ f(X)); (2.22)

ii) For all ε > 0, there exists δ > 0 such that |Xn(ω)−X(ω)| ≤ δ implies |f(Xn(ω))− f(X(ω))| ≤
ε, but

1 = lim
n→∞

P(|Xn −X| ≤ δ) ≤ lim
n→∞

P(|f(Xn)− f(X)| ≤ ε); (2.23)
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2.3 Exercises

Exercise 2.1. Prove the third inequality of Proposition 2.1.6.

Exercise 2.2 (Rosenthal 3.6.7). Consider Ω = {a, b, c} with the measure P(a) = P(b) = P(c) =
1/3. Find examples of An ⊆ Ω such that the inequalities in Proposition 2.1.6 are strict.

Exercise 2.3 (Rosenthal 3.6.9). Prove that for any collections {An} and {Bn},

lim sup(An ∩Bn) ⊆ lim supAn ∩ lim supBn, (2.24)

and find example where the inclusion is strict and where it is equality.

Exercise 2.4 (Rosenthal 3.6.12). Let X be a random variable such that P(X > 0) > 0. Prove
that there exists a δ > 0 such that P(X ≥ δ) > 0.

Exercise 2.5. Find an example of P and An such that ∑∞n=1 P(An) =∞ but P(An i.o.) = 1.

Exercise 2.6. Find a sequence Xn and X such that Xn
P−→ X but Xn 6→ X a.s.

Exercise 2.7. Show that Xn −→ X a.s. or Xn
P−→ X if and only if (Xn − X) −→ 0 a.s. or

(Xn −X) P−→ 0 respectively.

Exercise 2.8. Show that if Xn − an
P−→ 0 and an → a, then Xn

P−→ a.
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LECTURE 3

EXPECTATION

3.1 Simple Random Variables

Definition 3.1.1 (Simple Expectation). If X only takes finitely many values x1, . . . , xn, and
Ai = {ω : X(ω) = xi}, define the expectation of X by

EX =
n∑
i=1

xiP(Ai). (3.1)

Example 3.1.2. For an arbitrary set A ⊂ Ω, let Y (ω) = I{ω ∈ A}. Then, EY = P(A).

Example 3.1.3. P is uniform measure on Ω = [0, 1], and

X(ω) =
 5, ω > 1/3

3, ω ≤ 1/3
. (3.2)

Proposition 3.1.4. If X and Y are simple random variables, the following properties hold.
i) If X ≥ 0 a.s., EX ≥ 0;

ii) For all a ∈ R, EaX = aEX;
iii) E(X + Y ) = EX + EY .

Proof. Both i) and ii) are trivial. For iii), let X take values x1, . . . , xn on sets A1, . . . , An and Y take
values y1, . . . , ym on sets B1, . . . , Bm. Observe that there are mn events Cij = {X = xi ∩ Y = yj}.
Then,

E(X + Y ) =
n∑
i=1

m∑
j=1

(xi + yj)P(Cij)

=
n∑
i=1

xi
m∑
j=1

P(X = xi ∩ Y = yj) +
m∑
j=1

yj
n∑
i=1

P(X = xi ∩ Y = yj)

=
n∑
i=1

xiP(X = xi) +
m∑
j=1

yjP(Y = yj).

(3.3)

Lemma 3.1.5. If properties i) to iii) hold, the following properties also hold.
iv) If X ≤ Y a.s. then EX ≤ EY ;
v) If X = Y a.s. then EX = EY ;

vi) |EX| ≤ E |X|.
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Proof.
iv) X ≤ Y a.s. =⇒ Y −X ≥ 0 a.s. =⇒ E(Y −X) ≥ 0 =⇒ EY ≥ EX;
v) X = Y a.s. =⇒ X ≤ Y a.s and Y ≤ X a.s. so EX ≤ EY and EY ≤ EX;

vi) Trivially, X ≤ |X| and −X ≤ |X|, so EX ≤ E |X| and −EX = E(−X) ≤ E |X|.

3.2 Bounded Random Variables

Definition 3.2.1. A random variable X is bounded if there exists M <∞ such that |X| ≤M a.s.

Proposition 3.2.2. If X is bounded,

inf{EZ : Z simple, Z ≥ X a.s.} = sup{EY : Y simple, Y ≤ X a.s.}. (3.4)
Proof. Define L = sup{EY : Y simple, Y ≤ X a.s.} and U = inf{EZ : Z simple, Z ≥ X a.s.}. Since
Y ≤ X a.s. and X ≤ Z a.s. implies EY ≤ EZ, L ≤ U .

Now, consider an arbitrary n, and for each k in {−n, . . . , n}, define

Ek =
{
ω ∈ Ω : kM

n
≥ X(ω) > (k − 1)M

n

}
. (3.5)

Define the simple random variables

ψn(ω) =
n∑
−n

kM

n
I{ω ∈ Ek} and φn(ω) =

n∑
−n

(k − 1)M
n

I{ω ∈ Ek}. (3.6)

Observe that ψn(ω)− φn(ω) = M/n, ψn(ω) ≥ X(ω), and φn(ω) ≤ X(ω). Thus,

U ≤ Eψn
= Eφn +M/n

≤ L+M/n.

(3.7)

Since this is true for all n, U ≤ L.

Definition 3.2.3 (Bounded Expectation). If X is bounded, define

inf{EZ : Z simple, Z ≥ X a.s.} = EX = sup{EY : Y simple, Y ≤ X a.s.}. (3.8)

Proposition 3.2.4. If X is bounded, EX satisfies properties i) to iii).
Proof. For i), if X ≥ 0 a.s., there exists simple Y such that X ≥ Y ≥ 0 a.s., so sup{EY :
Y simple, Y ≤ X a.s.} ≥ EY ≥ 0. For ii), consider a > 0. Then,

EX = sup{EY : Y simple, Y ≤ X a.s.}

= 1
a

sup{EaY : Y simple, aY ≤ aX a.s.}

= 1
a
EaX.

(3.9)
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If a < 0 then use inf. For iii),

EX + EY = sup{EW : W simple,W ≤ X a.s.}+ sup{EV : V simple, V ≤ Y a.s.}
= sup{EW + EV : W,V simple,W ≤ X a.s. and V ≤ Y a.s.}
= sup{E(W + V ) : W,V simple,W ≤ X a.s. and V ≤ Y a.s.}
≤ sup{E(W + V ) : W,V simple, (W + V ) ≤ (X + Y ) a.s.}
= E(X + Y ).

(3.10)

Also,

EX + EY = inf{EW : W simple,W ≥ X a.s.}+ inf{EV : V simple, V ≥ Y a.s.}
= inf{EW + EV : W,V simple,W ≥ X a.s. and V ≥ Y a.s.}
= inf{E(W + V ) : W,V simple,W ≥ X a.s. and V ≥ Y a.s.}
≥ inf{E(W + V ) : W,V simple, (W + V ) ≥ (X + Y ) a.s.}
= E(X + Y ).

(3.11)

3.3 Non-Negative Random Variables

Definition 3.3.1 (Non-Negative Expectation). If X ≥ 0 a.s., define

EX = sup{EY : Y bounded, 0 ≤ Y ≤ X a.s.}. (3.12)

Lemma 3.3.2. Let X ≥ 0 a.s., and recall notation a ∧ b = min{a, b}. Then,

lim
n→∞

E(X ∧ n) = EX. (3.13)

Proof. Define Xn = X ∧ n. Clearly Xn ≤ X, so EXn ≤ EX. Also EXn ≤ EXn+1 for all n, so the
limit exists, and thus limn→∞ EXn ≤ EX. Consider a bounded Y such that 0 ≤ Y ≤ X a.s. Then,
for large n, EXn ≥ EY , so limn→∞ EXn ≥ sup{EY : Y bounded, 0 ≤ Y ≤ X a.s.} = EX.

Proposition 3.3.3. If X ≥ 0 a.s., EX satisfies properties i) to iii).
Proof. For i) the proof is the same as for bounded random variables. For ii)

EX = sup{EY : Y bounded, 0 ≤ Y ≤ X a.s.}

= 1
a

sup{EaY : Y bounded, 0 ≤ aY ≤ aX a.s.}

= 1
a
EaX.

(3.14)

For iii), by the same argument as for bounded random variables,

EX + EY ≤ sup{EZ : Z bounded, 0 ≤ Z ≤ X + Y a.s.} = E(X + Y ). (3.15)
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Also,
E(X + Y ) = lim

n→∞
E[(X + Y ) ∧ n]

≤ lim
n→∞

E[(X ∧ n) + (Y ∧ n)]

= lim
n→∞

[E(X ∧ n) + E(Y ∧ n)]

= EX + EY.

(3.16)

3.4 Integrable Random Variables

Example 3.4.1. Consider the uniform measure on [0,1], and let X(ω) = 2k when 2−k ≤ ω < 2−(k−1),
k ∈ N. Then, for any n, let Xn(ω) = 2k when 2−k ≤ ω < 2−(k−1), k ∈ [n] and 0 otherwise.
Clearly, Xn ≤ X, Xn simple, and EXn = ∑n

k=1 2k(2−(k−1) − 2−k) = 2k2−k = n. Thus, for any n,
sup{EY : Y simple, Y ≤ X a.s.} ≥ n, so EX =∞.

Definition 3.4.2. A random variable X is integrable if E |X| <∞.

Definition 3.4.3 (Integrable Expectation). For any random variable X, let X+(ω) =
max{X(ω), 0} and X−(ω) = max{−X(ω), 0}. Observe that both X+ and X− are non-negative,
X = X+ −X−, and |X| = X+ +X−. Then, if X is integrable, define EX = EX+ − EX−.

Proposition 3.4.4. If X is integrable, properties i) to iii) hold.
Proof. For i), observe that X− = 0. For ii), if a > 0,

EaX = E(aX)+ − E(aX)−

= EaX+ − EaX−

= a(EX+ − EX−)
= aEX.

(3.17)

If a < 0,
EaX = E(aX)+ − E(aX)−

= E(−aX−)− E(−aX+)
= a(EX+ − EX−)
= aEX.

(3.18)

For iii), since E(X + Y )− ≤ E |X + Y | ≤ E |X|+ E |Y | <∞,

E(X + Y ) = E(X + Y )+ − E(X + Y )−

= E(X+ + Y +)− E(X− + Y −)
= E(X+ −X−) + E(Y + − Y −)
= EX + EY.

(3.19)
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3.5 Familiar Properties

Theorem 3.5.1. If X and Y are independent with EX,EY <∞, then E(XY ) = (EX)(EY ).
Proof. First, suppose X and Y are simple, so that X = ∑n

i=1 xiI{Ai} and Y = ∑m
j=1 yjI{Bj}. Then,

E(XY ) = E

 n∑
i=1

m∑
j=1

xiyjI{Ai ∩Bj}


=

n∑
i=1

m∑
j=1

xiyjP(X ∈ Ai, Y ∈ Bj)

=
n∑
i=1

m∑
j=1

xiyjP(X ∈ Ai)P(Y ∈ Bj)

=
n∑
i=1

xiP(X ∈ Ai)
m∑
j=1

yjP(Y ∈ Bj)

= (EX)(EY ).

(3.20)

Next suppose that X and Y are bounded and non-negative. Then, since Z1 ≥ X,Z2 ≥ Y implies
Z1Z2 ≥ XY

(EX)(EY ) = inf {EZ1 : Z1 simple , Z1 ≥ X a.s.} inf {EZ2 : Z2 simple , Z2 ≥ Y a.s.}
= inf {(EZ1)(EZ2) : Z1, Z2 simple and independent , Z1 ≥ X,Z2 ≥ Y a.s.}
≥ inf {E(Z1Z2) : Z1, Z2 simple and independent , Z1Z2 ≥ XY a.s.}
≥ inf {E(Z) : Z simple , Z ≥ XY a.s.}
= E(XY ).

(3.21)

Similarly,

(EX)(EY ) = sup {EZ1 : Z1 simple , Z1 ≤ X a.s.} sup {EZ2 : Z2 simple , Z2 ≤ Y a.s.}
= sup {(EZ1)(EZ2) : Z1, Z2 simple and independent , Z1 ≤ X,Z2 ≤ Y a.s.}
≤ sup {E(Z1Z2) : Z1, Z2 simple and independent , 0 ≤ Z1Z2 ≤ XY a.s.}
≤ sup {E(Z) : Z simple , 0 ≤ Z ≤ XY a.s.}
= E(XY ).

(3.22)

That is E(XY ) = (EX)(EY ). Now, recalling that if X and Y are independent then all combinations
of X+, X−, Y +, and Y − are independent, for arbitrary bounded and independent X, Y ,

E(XY ) = E[(X+ −X−)(Y + − Y −)]
= E[X+Y + −X−Y + −X+Y − −X−Y −]
= (EX+)(EY +)− (EX−)(EY +)− (EX+)(EY −)− (EX−)(EY −)
= (EX)(EY ),

(3.23)

where we applied the result for bounded and non-negative repeatedly. This argument can be repeated
for the non-negative case and the integrable case.
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Definition 3.5.2. The variance of a random variable X is defined as Var(X) = E[(X − EX)2]. The
covariance of random variables X and Y is Cov(X, Y ) = E[(X − EX)(Y − EY )]. The correlation
between random variables X and Y is Corr(X, Y ) = Cov(X, Y )/

√
Var(X) Var(Y ).

3.6 Exercises

Exercise 3.1. Show that the following properties hold:
i) Var(X) ≥ 0,

ii) For any c ∈ R, Var(cX) = c2 Var(X),
iii) If X and Y are independent, Var(X + Y ) = Var(X) + Var(Y ).

Exercise 3.2. Prove that Definition 3.1.1 is well-defined. That is, if {Ai} and {Bj} are partitions of
Ω with ∑n

i=1 xiIAi = ∑m
j=1 yjIBj , then ∑n

i=1 xiP(Ai) = ∑m
j=1 yjP(Bj).

Exercise 3.3. Prove that if X ∼ P and Y ∼ P, then EX = EY . Hint: start with simple random
variables and work up.

Exercise 3.4 (Rosenthal 4.5.2). For X such that EX <∞ and a ∈ R, prove that E[max{X, a}] ≥
max{EX, a}.

Exercise 3.5 (Rosenthal 4.5.3). Find random variables X, Y : [0, 1] → R such that under the
uniform measure, P(X > Y ) > 1/2 but EX < EY .

Exercise 3.6 (Rosenthal 4.5.10). Let X1, X2 be i.i.d. with EXi = µ and Var(Xi) = σ2, and let N
be integer valued with EN = m and Var(N) = v and independent from all Xi. Show that

Var
(

N∑
i=1

Xi

)
= σ2m+ µ2v. (3.24)

Exercise 3.7 (Rosenthal 4.5.13). Find examples of X : [0, 1] → R with uniform measure P such
that

a) EX+ =∞ and 0 < EX− <∞,
b) EX− =∞ and 0 < EX+ <∞,
c) EX+ = EX− =∞,
d) EX <∞ but EX2 =∞.
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LECTURE 4

PROPERTIES OF EXPECTATION

4.1 Concentration of Measure

Theorem 4.1.1 (Markov’s Inequality). If X ≥ 0 a.s., then for all a > 0,

P(X ≥ a) ≤ EX
a
. (4.1)

Proof. Define Z(ω) = aI{X(ω) ≥ a}. Then, Z ≤ X a.s., and since Z is simple, EZ = aP (X ≥
a).

Corollary 4.1.2 (Chebyshev’s Inequality). For all t ≥ 0,

P(|X − EX| ≥ t) ≤ Var(X)
t2

. (4.2)

Proof. Apply Markov’s to Y = (X − EX)2.

Definition 4.1.3. The moment generating function of a random variable X is defined by

MX(λ) = EeλX . (4.3)

Corollary 4.1.4 (Chernoff’s Inequality). For all t ≥ 0,

P(X ≥ EX + t) ≤ inf
λ>0

MX−EX(λ)e−λt. (4.4)

Proof. Markov’s.

Definition 4.1.5. A function f : R −→ R is convex if for all λ ∈ (0, 1) and x, y ∈ R,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (4.5)

Lemma 4.1.6. If Y satisfies EY = 0 and a ≤ Y ≤ b a.s., for all λ > 0

MY (λ) ≤ eλ
2(b−a)2/8. (4.6)

Proof. Since Y ∈ [a, b], we can write it as a convex combination via Y = αa + (1 − α)b for some
α ∈ [0, 1]. In particular, this holds for α = (b− Y )/(b− a). Since eλY is convex in Y ,

eλY = eλ[αa+(1−α)b] ≤ αeλa + (1− α)eλb = b− Y
b− a

eλa + Y − a
b− a

eλb. (4.7)

Taking expectation of both sides gives

EeλY ≤ b

b− a
eλa − a

b− a
eλb. (4.8)
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Then, define p = b/(b− a) and u = (b− a)λ. Also, consider the function

ϕ(u) = log(peλa + (1− p)eλb) = λa+ log(p+ (1− p)eλ(b−a)) = (p− 1)u+ log(p+ (1− p)eu). (4.9)

Then, from Taylor expanding we see that there exists a ξ ∈ R such that

ϕ(u) = ϕ(0) + ϕ′(0)u+ 1
2ϕ
′′(ξ)u2. (4.10)

Observe that ϕ(0) = 0 and

ϕ′(x) = (p− 1) + (1− p)ex
p+ (1− p)ex = (p− 1) + 1− p

p+ (1− p)ex , (4.11)

so ϕ′(0) = 0 as well. Finally,

ϕ′′(x) = p(1− p)ex
[p+ (1− p)ex]2 , (4.12)

which you can check satisfies ϕ′′(x) ≤ 1/4 for all x ∈ R. That is,

EeλY ≤ eϕ(u) ≤ eu
2/8 ≤ eλ

2(b−a)2/8. (4.13)

Theorem 4.1.7 (Hoeffding’s Inequality). Suppose X1, X2, . . . are independent with ai ≤ Xi ≤ bi
a.s. for all i. Then, letting Sn = ∑n

i=1Xi, for all t > 0

P (|Sn − ESn| ≥ t) ≤ 2 exp
{
− 2t2∑n

i=1(bi − ai)2

}
. (4.14)

Proof. First, we apply Chernoff’s inequality to obtain

P(Sn − ESn ≥ t) ≤ inf
λ>0

e−λtMSn−ESn(λ). (4.15)

By independence and the above lemma,

MSn−ESn(λ) =
n∏
i=1

MXi−EXi(λ) ≤
n∏
i=1

eλ
2(bi−ai)2/8 = exp

{
λ2

8

n∑
i=1

(bi − ai)2
}
. (4.16)

Thus,

P(Sn − ESn ≥ t) ≤ inf
λ>0

exp
{
−λt+ λ2

8

n∑
i=1

(bi − ai)2
}
. (4.17)

Taking λ = 4t∑n

i=1(bi−ai)2 gives one direction of the result. To get the other direction consider
−X1, . . . ,−Xn.

4.2 Various Inequalities

Proposition 4.2.1 (Jensen’s Inequality). If f is a convex function and X is a random variable
such that f(X) is integrable,

f(EX) ≤ Ef(X). (4.18)
The inequality is flipped if f is concave.
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Proof. Since f is convex, there exists a function g such that g(x) = ax+ b such that g(x) ≤ f(x) for
all x and g(EX) = f(EX). Then,

Ef(X) ≥ Eg(X) = E[aX + b] = aEX + b = g(EX) = f(EX). (4.19)

If concave then −f is convex.

Example 4.2.2. (EX)2 ≤ EX2, E log(X) ≤ log(EX).

Lemma 4.2.3. If 0 < p < q,
[E |X|p]1/p ≤ [E |X|q]1/q. (4.20)

Proof. Since q/p > 1, f(x) = xq/p is convex. Thus,

[E |X|p]q/p ≤ E(|X|p)q/p = E |X|q . (4.21)

Lemma 4.2.4. If X ≥ 0 a.s. and EX = 0, X = 0 a.s.
Proof. Define An = {ω ∈ Ω : X(ω) > 1/n} for n ∈ N. By Markov, P (An) = 0 for all n. Also,
An ↗ A = {ω ∈ Ω : X(ω) > 0}, so by continuity of probability P (A) = limn→∞ P (An) = 0.

Proposition 4.2.5 (Holder’s Inequality). If p, q > 1 such that 1/p+ 1/q = 1,

E |XY | ≤ [E |X|p]1/p[E |Y |q]1/q. (4.22)

Proof. If [E |X|p]1/p = 0, |X|p = 0 a.s. so X = 0 a.s., which implies |XY | = 0 a.s. The same holds
if [E |Y |q]1/q = 0.

Otherwise, let
X∗ = |X|

[E |X|p]1/p and Y ∗ = |Y |
[E |Y |q]1/q . (4.23)

Observe that E(X∗)p = E(Y ∗)q = 1.

We now show 1
p
xp + 1

q
yq ≥ xy for all x, y ≥ 0. To see this, let hy(x) = 1

p
xp + 1

q
yq − xy. Then,

h′y(x) = xp−1 − y and h′′y(x) = (p − 1)xp−2 ≥ 0, so the minimizer is x∗ = y1/(p−1). Plugging this in,
hy(x∗) = 1

p
yp/(p−1) + 1

q
yq − y1/(p−1)y = yq

(
1
p

+ 1
q

)
− yq = 0.

Thus, X∗Y ∗ ≤ 1
p
(X∗)p + 1

q
(Y ∗)q, so

E |XY |
[E |X|p]1/p[E |Y |p]1/p ≤

1
p

+ 1
q

= 1. (4.24)

Corollary 4.2.6 (Cauchy-Schwarz Inequality).

E |XY | ≤
√
EX2EY 2. (4.25)
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Proposition 4.2.7 (Minkowski’s Inequality). If p > 1,

[E |X + Y |p]1/p ≤ [E |X|p]1/p + [E |Y |p]1/p. (4.26)

Proof. Let q = p
p−1 so that 1/p+ 1/q = 1. Then, by Holder’s,

E
[
|X| |X + Y |p−1

]
≤ [E |X|p]1/p

[
E |X + Y |q(p−1)

]1/q
= [E |X|p]1/p [E |X + Y |p](p−1)/p

. (4.27)

Similarly,
E
[
|Y | |X + Y |p−1

]
≤ [E |Y |p]1/p [E |X + Y |p](p−1)/p

. (4.28)
Thus,

E |X + Y |p ≤ E
[
(|X|+ |Y |) |X + Y |p−1

]
≤
(
[E |X|p]1/p + [E |Y |p]1/p

)
[E |X + Y |p](p−1)/p

. (4.29)

Rearrange to get the result.

4.3 Limit Theorems

Theorem 4.3.1 (Bounded Convergence Theorem). Suppose that |Xn| ≤M a.s. and Xn
P−→ X.

Then, EX = limn→∞ EXn.
Proof. Fix ε > 0 and define Gn = {|Xn −X| > ε}. Then,

|EXn − EX| = |E(Xn −X)|
≤ E |Xn −X|
= E [|Xn −X| IGn ] + E

[
|Xn −X| IGcn

]
≤ 2MP(Gn) + ε[1− P(Gn)]
= ε+ P(Gn)[2M − ε].

(4.30)

By convergence in probability and arbitrary ε, limn→∞ |EXn − EX| = 0. Real analysis fact that this
implies the result.

Theorem 4.3.2 (Fatou’s Lemma). If Xn ≥ 0 a.s. for all n, lim infn−→∞ EXn ≥ E(lim infn−→∞Xn).
Proof. For each n, define Yn = infm≥nXm. Clearly, Xn ≥ Yn a.s. and Yn ↑ lim infn−→∞Xn = Y a.s.
Thus, lim infn−→∞ EXn ≥ lim infn−→∞ EYn. Fix an arbitrary M , and observe (Yn ∧M) −→ (Y ∧M)
a.s., so by BCT we have lim infn−→∞ EYn ≥ limn→∞ E(Yn ∧M) = E(Y ∧M). Taking the limit as
M −→∞ and applying Lemma 3.3.2 gives the result.

Theorem 4.3.3 (Monotone Convergence Theorem). IfXn ≥ 0 a.s. andXn ↑ X a.s., EXn ↑ EX.
Proof. Since EXn ≤ EX, limn→∞ EXn ≤ EX. But, by Fatou’s,

lim
n→∞

EXn = lim inf
n−→∞

EXn ≥ E(lim inf
n−→∞

Xn) = EX. (4.31)
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Theorem 4.3.4 (Dominated Convergence Theorem). If Xn −→ X a.s. and |Xn| ≤ Y a.s. for
some integrable Y , EX = limn→∞ EXn.
Proof. Since |Xn| ≤ Y a.s. for all n, |X| ≤ Y a.s. and thus X is integrable. Since Xn + Y ≥ 0
a.s. for all n, by Fatou’s lim infn−→∞ E(Xn + Y ) ≥ E(lim infn−→∞Xn + Y ) = E(X + Y ).
Thus, lim infn−→∞ EXn ≥ EX. It also holds that Y − Xn ≥ 0, so lim infn−→∞ E(Y − Xn) ≥
E(lim infn−→∞ Y − Xn) = E(Y − X). Rearranging (and using that the expectations are all finite)
gives EX ≥ lim supn−→∞ EXn, so the result holds.

4.4 Computing Expected Value

Theorem 4.4.1. Suppose X is a random variable with density f . Then, for any function g,

Eg(X) =
∫
R
g(x)f(x)dx. (4.32)

Proof. First, suppose g(X) is a simple random variable taking values g1, . . . , gn. Then, we can
define Ai = {x ∈ R : g(x) = gi} and Ei = {ω ∈ Ω : X(ω) ∈ Ai}. Observe that the Ai partition
the set Img(X) = {x ∈ R : ∃ω ∈ Ω s.t. X(ω) = x} and consequently the Ei partition Ω. Then,
Eg(X) = ∑n

i=1 giP(Ei), and since clearly Img(X) ⊇ Support(X) = {x ∈ R : f(x) > 0},∫
R
g(x)f(x)dx =

∫
Img(X)

g(x)f(x)dx

=
∫

Img(X)

n∑
i=1

giI{x ∈ Ai}f(x)dx

=
n∑
i=1

gi

∫
Img(X)

I{x ∈ Ai}f(x)dx

=
n∑
i=1

giP(X ∈ Ai)

=
n∑
i=1

giP(Ei).

(4.33)

Next, suppose g(X) ≥ 0 a.s. For each n ∈ N, define gn = b2ng(X)c
2n ∧ n. Observe that

0 ≤ gn(X) ≤ g(X), gn ↑ g, and it takes finitely many values so it is a simple function. Thus,
Egn(X) =

∫
gn(x)f(x)dx by the first part of the proof. By MCT, limn→∞ Egn(X) = Eg(X) and since

gn ≥ 0, limn→∞
∫
gn(x)f(x)dx =

∫
g(x)f(x)dx.

Finally, suppose E |g(X)| <∞. Then apply previous paragraph to Eg+(X) and Eg−(X).
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4.5 Exercises

Exercise 4.1. Using a Taylor expansion, show that for a Rademacher random variable S (e.g., taking
values 1 and −1 with probability 1/2 each)

EeλS ≤ eλ
2/2 ∀λ ∈ R. (4.34)

Then, letting Z = ∑n
i=1 Si for i.i.d. Rademachers Si, show that

P(Z ≥ t) ≤ e−t
2/(2n). (4.35)

Exercise 4.2 (Rosenthal 3.6.13). Suppose EXn = 0 and E(X2
n) = 1 for all n. Prove that P(Xn ≥

n i.o.) = 0.

Exercise 4.3. Find a random variable X and a > 0 such that P(X > a) ≥ EX/a, and identify what
breaks in the proof of Markov’s inequality for this example.

Exercise 4.4. For any X, Y , use Cauchy-Schwarz to show that |Corr(X, Y )| ≤ 1.

Exercise 4.5. Prove that f(x) = max{x, a} and f(x) = (x− a)2 are convex for any a ∈ R.

Exercise 4.6 (Rosenthal 5.5.9). Prove that if X is such that EX = m <∞ and Var(X) = v <∞,
for all a > 0

P(X −m ≥ a) ≤ v

v + a2 . (4.36)

Exercise 4.7 (Rosenthal 5.5.10). Let X1, X2, . . . satisfy EXn = m < ∞ and Var(Xn) = 1/
√
n.

Prove that Xn
P−→ m.

Exercise 4.8 (Rosenthal 5.5.11). Give an example of X1, X2, . . . such that Xn/n
P−→ 0 and

Xn/n
2 −→ 0 a.s., but P(Xn/n −→ 0) < 1.

Exercise 4.9. Prove that if Xn −→ X a.s., for all ε > 0

P(|Xn −X| ≥ ε i.o.) = 0. (4.37)

Exercise 4.10. Show that if X only takes values in N, EX = ∑∞
k=1 P(X ≥ k).

Exercise 4.11. Show that if X ≥ 0 and p > 0, EXp =
∫∞

0 pxp−1P(X ≥ x)dx.

Exercise 4.12 (Convolution Formula). Show that if X and Y are independent with densities fX
and fY , for all z ∈ R,

P(X + Y ≤ z) =
∫
FX(z − y)fY (y)dy. (4.38)
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LECTURE 5

LAWS OF LARGE NUMBERS

5.1 Familiar Results

Theorem 5.1.1 (Basic Weak LLN). Let X1, X2, . . . be independent, and for all i, suppose EXi = µ
and Var(Xi) ≤ σ2 <∞. Define Sn = ∑n

i=1Xi. Then,

1
n
Sn

P−→ µ. (5.1)

Proof. By linearity, ESn/n = µ and Var(Sn/n) ≤ σ2/n. Then, for any ε > 0, Chebyshev’s gives that

lim
n→∞

P(|Sn/n− µ| > ε) ≤ lim
n→∞

σ2

nε2 = 0. (5.2)

Theorem 5.1.2 (Basic Strong LLN). Let X1, X2, . . . be independent, and for all i, suppose EXi =
µ and E(Xi − µ)4 ≤ a <∞. Then,

1
n
Sn −→ µ a.s. (5.3)

Proof. First, observe that E(Xi − µ)2 ≤ E(Xi − µ)4 + 1, by considering the case when the variance
is smaller and greater than 1. Without loss of generality, we can suppose µ = 0. Then, we have that

ES4
n = E

(
n∑
i=1

Xi

)4

= E
( n∑
i=1

X4
i + k1

n∑
i=1

∑
j 6=i

X3
iXj + k2

n∑
i=1

∑
j 6=i

X2
iX

2
j + k3

n∑
i=1

∑
j 6=i

∑
k 6=j,i

X2
iXjXk

+ k4

n∑
i=1

∑
j 6=i

∑
k 6=j,i

∑
6̀=j,i,k

XiXjXkX`

)

= E
n∑
i=1

X4
i + k2E

n∑
i=1

∑
j 6=i

X2
iX

2
j

≤ na+ k2n(n− 1)(a+ 1)2

≤ Kn2.

Next, for any ε > 0, we can apply Markov’s to get

P
(∣∣∣∣ 1nSn

∣∣∣∣ > ε
)

= P(S4
n > n4ε4) ≤ ES4

n

n4ε4 ≤
K

n2ε4 .
(5.4)

Since ∑∞n=1
K
n2ε4 <∞, by Borel-Cantelli the result holds.
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5.2 Advanced Weak LLN

Definition 5.2.1. A sequence of random variables (Xi)i∈I with EX2
i <∞ are uncorrelated if for all

i 6= j, EXiXj = EXiEXj.

Lemma 5.2.2. If X1, . . . , Xn are uncorrelated, Var (∑n
i=1Xi) = ∑n

i=1 Var(Xi).
Proof. Exercise.

Lemma 5.2.3. If p > 0 and E |Xn|p −→ 0, Xn
P−→ 0.

Proof. Markov’s.

Theorem 5.2.4 (Uncorrelated Weak LLN). If X1, X2, . . . are uncorrelated with EXi = µ and
Var(Xi) ≤ σ2 <∞,

E
( 1
n
Sn − µ

)2
→ 0. (5.5)

Proof.

E
( 1
n
Sn − µ

)2
= Var

( 1
n
Sn

)
= 1
n2

n∑
i=1

Var(Xi) ≤
nσ2

n2 → 0. (5.6)

Theorem 5.2.5 (Weak LLN). If X1, X2, . . . are i.i.d. with limx→∞ xP(|X1| > x) = 0, for µn =
E (X1I {|X1| ≤ n}),

1
n
Sn − µn

P−→ 0. (5.7)

Proof. Fix ε > 0. Let X̄(n)
k = XkI{|Xk| ≤ n} and S̄n = ∑n

k=1 X̄
(n)
k . Then,

P
(∣∣∣∣Snn − µn

∣∣∣∣ > ε
)
≤ P(Sn 6= S̄n) + P

(∣∣∣∣∣ S̄nn − µn
∣∣∣∣∣ > ε

2

)
. (5.8)

For the first term,

P(Sn 6= S̄n) ≤ P
(

n⋃
k=1
{X̄(n)

k 6= Xk}
)

≤
n∑
k=1

P(X̄(n)
k 6= Xk)

=
n∑
k=1

P(|Xk| > n)

= nP(|X1| > n)
−→ 0.

(5.9)

For the second term, first observe that

ES̄n = E
n∑
k=1

X̄
(n)
k =

n∑
k=1

E[XkI{|Xk| ≤ n}] = nµn. (5.10)
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So, by Chebyshev’s,

P
(∣∣∣∣∣ S̄nn − µn

∣∣∣∣∣ > ε

2

)
≤ 4
n2ε2E

(
S̄n − nµn

)2

= 4
n2ε2 Var

(
S̄n
)

= 4
n2ε2

n∑
k=1

Var
(
X̄

(n)
k

)
= 4
nε2 Var

(
X̄

(n)
1

)
≤ 4
nε2E(X1I{|X1| ≤ n})2.

(5.11)

Finally, recalling that EXp =
∫∞

0 pxp−1P(X ≥ x)dx,

E(X1I{|X1| ≤ n})2 =
∫ ∞

0
2xP

(∣∣∣X̄(n)
k

∣∣∣ ≥ x
)
dx

=
∫ n

0
2xP(|Xk| ≥ x)dx

= 2
∫ n

0
xP(|X1| ≥ x)dx.

(5.12)

Since 0 ≤ xP(|X1| ≥ x) ≤ x for all x and goes to 0, supx xP(|X1| ≥ x) <∞. Thus,

lim
n→∞

1
n

∫ n

0
xP(|X1| ≥ x)dx = lim

n→∞

∫ 1

0
nyP(|X1| > ny)dy =

∫ 1

0
lim
n→∞

nyP(|X1| > ny)dy = 0. (5.13)

Corollary 5.2.6. If X1, X2, . . . are i.i.d. with E |X1| <∞ and EX1 = µ <∞,

1
n
Sn

P−→ µ. (5.14)

Proof. Let Yn = |X1| I{|X1| > n}. For each ω ∈ Ω, |X1(ω)| <∞, so Yn −→ 0 a.s. Since |Yn| ≤ |X1|
which is integrable, by the DCT we have EYn −→ 0. Further, observe that Yn ≥ nI{|X1| > n}, so
EYn ≥ nP(|X1| > n). Thus, limx→∞ xP(|X1| > x) = 0.

Next, consider Zn = X1I{|X1| ≤ n}. Again, since |X1(ω)| < ∞, Zn −→ X1 a.s. Thus, we can again
apply DCT to obtain µn = EZn −→ EX1 = µ. The result then follows by the Weak LLN.

5.3 Advanced Strong LLN

Theorem 5.3.1 (Strong LLN). If X1, X2, . . . are i.i.d. with E |X1| <∞ and EX1 = µ <∞,

1
n
Sn −→ µ a.s. (5.15)

Proof. Not required to be able to prove for this class. The main techniques are well summarized in
the proof of the Weak LLN.
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5.4 Applications

Proposition 5.4.1 (Polynomial Approximation). If f : [0, 1] → R is continuous, the Bernstein
approximation

fn(x) =
n∑

m=0

(
n

m

)
xm(1− x)n−mf(m/n) (5.16)

satisfies
sup
x∈[0,1]

|fn(x)− f(x)| −→ 0. (5.17)
Proof.

|fn(x)− f(x)|
= |Ef(Sn/n)− f(x)|
≤ E |f(Sn/n)− f(x)|
= E [|f(Sn/n)− f(x)| I{|Sn/n− x| < δ}] + E [|f(Sn/n)− f(x)| I{|Sn/n− x| ≥ δ}]
≤ ε+ 2MP(|Sn/n− x| ≥ δ),

(5.18)

where M = supx∈[0,1] |f(x)| < ∞ since f is continuous on a closed interval. Now, by Chebyshev’s
inequality,

P(|Sn/n− x| ≥ δ) ≤ E[(Sn/n− x)2]
δ2 = Var(Sn/n)

δ2 =
∑n
i=1 Var(Xi)
n2δ2 = x(1− x)

nδ2 ≤ 1
4nδ2 .

Since this was true for all x ∈ [0, 1], limn→∞ supx∈[0,1] |fn(x)− f(x)| ≤ ε, but ε was arbitrary so the
proposition follows.

Theorem 5.4.2 (Glivenko-Cantelli). Let X1, X2, . . . be i.i.d. with CDF F and define the empirical
distribution function

Fn(x) = 1
n

n∑
i=1

I{Xi ≤ x}.

Then,
sup
x∈R
|Fn(x)− F (x)| −→ 0 a.s. (5.19)

Proof. Fix x ∈ R and define Yi = I{Xi ≤ x}. Since Yi are i.i.d. and EYi = F (x) ≤ 1, the Strong LLN
says that Fn(x) = 1

n

∑n
i=1 Yi −→ F (x) a.s. That is, pointwise convergence occurs almost surely. One

might hope to automatically upgrade pointwise convergence of Fn(x) to uniform convergence since F
is bounded, but F may not be continuous, so we must show this upgrade can be done.

Still for a fixed x, let Zi = I{Xi < x}. For any function g, let g(x−) = limy↑x g(y). Again, Zi are
i.i.d. with EZi = P(Xi < x) = F (x−), so by the Strong LLN we have limn→∞ Fn(x−) = F (x−) a.s.
That is, we also have pointwise convergence of Fn(x−) almost surely.

Now, fix an arbitrary k ∈ N, and for 1 ≤ j ≤ k − 1, define xj,k = inf{x : F (x) ≥ j/k}. Also, define
x0,k = −∞ and xk,k =∞. By the pointwise convergence shown above, for each j and k, there exists
Nj,k such that if n > Nj,k then

|Fn(xj,k)− F (xj,k)| <
1
k

and |Fn(xj,k−)− F (xj,k−)| < 1
k
. (5.20)
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Let Nk = sup0≤j≤kNj,k. Then, for any x ∈ R, there exists 1 ≤ j ≤ k with x ∈ (xj−1,k, xj,k). If n > Nk,
then by monotonicity of Fn and F , and F (xj,k−)− F (xj−1,k) ≤ 1

k
,

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + 1
k
≤ F (xj−1,k) + 2

k
≤ F (x) + 2

k
. (5.21)

Similarly,
Fn(x) ≥ Fn(xj−1,k) ≥ F (xj−1,k)−

1
k
≥ F (xj,k−)− 2

k
≥ F (x)− 2

k
. (5.22)

That is, |Fn(x)− F (x)| ≤ 2
k

for all x ∈ R, since Nk does not depend on x. Since k was arbitrary, the
result holds.
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5.5 Exercises

Exercise 5.1. Prove Lemma 5.2.2.

Exercise 5.2 (Durrett 2.2.1). Suppose X1, X2, . . . are uncorrelated with EXi = µi and
limi→∞

Var(Xi)
i

= 0. If νn = 1
n
ESn, show that

lim
n→∞

E
[ (

Sn
n
− νn

)2 ]
= 0.

Exercise 5.3 (Durrett 2.2.4). Let X1, X2, . . . be i.i.d. such that P(X1 = (−1)kk) = C
k2 log(k) for all

integers k ≥ 2, where C is a constant so that the probabilities sum to 1. Show that E |X1| =∞ but
there is a finite µ such that Sn

n

P−→ µ.

Hint #1: µn = E[X1I{|X1 ≤ n|}] = ∑n
k=2(−1)kk C

k2 log(k) is an alternating sequence of real numbers
that congerge to zero, so from calculus class µn −→ µ for some real number µ. Thus, it suffices to
show Sn

n
− µn

P−→ 0.
Hint #2: For any positive and decreasing function f , ∑∞k=x+1 f(k) ≤

∫∞
x f(y)dy ≤ ∑∞k=x f(k).

Exercise 5.4 (Durrett 2.2.5). Let X1, X2, . . . be i.i.d. such that P(X1 > x) = e
x log(x) for x ≥ e.

Show that E |X1| =∞, but Sn
n
− µn

P−→ 0.
Hint: Recall Exercise 4.11.

Exercise 5.5. For any sequence of random variables Xn and ε > 0, show there exist constants
cn →∞ such that P(|Xn| > εcn) < 2−n.

Exercise 5.6 (Durrett 2.3.10). For any sequence of random variables Xn, show there exist con-
stants cn →∞ such that

Xn

cn
−→ 0 a.s.

Exercise 5.7 (Durrett 2.3.15). Suppose X1, X2, . . . are i.i.d. Show that E |X1| <∞ if and only if

Xn

n
−→ 0 a.s.

Exercise 5.8 (Durrett 2.3.18). Suppose X1, X2, . . . are i.i.d. such that for all n, P(Xn > x) = e−x.
Show that

lim sup
n→∞

Xn

log(n) = 1 a.s.
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LECTURE 6

CENTRAL LIMIT THEOREMS

6.1 Weak Convergence

Definition 6.1.1. A sequence of probability measures µn with corresponding distribution functions
Fn converge weakly to a probability measure µ with distribution function F if for all continuity points
x of F

lim
n→∞

Fn(x) = F (x), (6.1)

and is denoted by µn =⇒ µ, or Fn =⇒ F , or Xn =⇒ X if Xn ∼ Fn and X ∼ F .

Theorem 6.1.2 (Scheffé’s Theorem). Let Xn each have density fn and X have density f . Then,
if fn(x) −→ f(x) for all x ∈ R, Xn =⇒ X.
Proof. Observe that the existence of a density implies F is continuous everywhere.

|Fn(y)− F (y)| =
∣∣∣∣∫ y

−∞
[fn(x)− f(x)] dx

∣∣∣∣
≤
∫ y

−∞
|fn(x)− f(x)| dx

≤
∫
R
|fn(x)− f(x)| dx

=
∫
R

[fn(x)− f(x)]+ dx+
∫
R

[fn(x)− f(x)]− dx

= 2
∫
R

[fn(x)− f(x)]− dx

= 2
∫
R

[f(x)− fn(x)]+ dx,

(6.2)

using that x+ + x− = |x|, x+ − x− = x, and (−x)+ = x−. Then, observe that [f(x)− fn(x)]+ ≤
[f(x)]+ = f(x), so

lim
n→∞

|Fn(y)− F (y)| ≤ 2
∫

lim
n→∞

[f(x)− fn(x)]+ dx = 0. (6.3)

Theorem 6.1.3 (Skorokhod Representation on R). If Fn =⇒ F , there exist an Ω and P along
with random variables X,X1, X2, . . . defined on Ω such that Xn ∼ Fn, X ∼ F and P(Xn −→ X) = 1.
Proof. Consider x ∈ [0, 1]. First, suppose there is at most one a ∈ R such that F (a) = x. Then, by
Exercise 6.6, F−1

n (x) −→ F−1(x). Otherwise, suppose there are a < b such that F (a) = F (b) = x.
Then, there is a q ∈ Q such that a < q < b and consequently F (q) = x, so there are only countably
many x that can satisfy this property. Let Ω = [0, 1] and P be the uniform distribution on [0, 1].
Since P(A) = 0 for any countable A, P(F−1

n (ω) −→ F−1(ω)) = 1. So, taking Xn(ω) = F−1
n (ω) and

X(ω) = F−1(ω) suffices.
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Theorem 6.1.4 (Portmanteau Lemma). Fn =⇒ F if and only if for all bounded and continuous
h : R→ R, when Xn ∼ Fn and X ∼ F then

Eh(Xn) −→ Eh(X).

Proof. For the forward direction, choose Xn ∼ Fn and X ∼ F with P(Xn −→ X) = 1 from the
Skorokhod representation. Then, by the bounded convergence theorem, Eh(Xn) −→ Eh(X).

For the reverse direction, fix a ∈ R and define ga(x) = I{x ≤ a} and suppose Xn ∼ Fn and X ∼ F .
To approximate ga with a continuous function, define

ga,ε(x) =


1 x ≤ a

1− (x− a)/ε a ≤ x ≤ a+ ε

0 x ≥ a+ ε

. (6.4)

Observe that Fn(a) = P(Xn ≤ a) = Ega(Xn) and for all ε > 0, ga−ε ≤ ga−ε,ε ≤ ga ≤ ga,ε ≤ ga+ε. Also,
ga,ε is bounded and continuous, so limn→∞ Ega,ε(Xn) = Ega,ε(X). Thus,

lim sup
n→∞

Fn(a) ≤ lim
n→∞

Ega,ε(Xn) = Ega,ε(X) ≤ F (a+ ε). (6.5)

Thus, for all a, lim supn→∞ Fn(a) ≤ limε→0 F (a+ ε) = F (a). Similarly,

lim inf
n→∞

Fn(a) ≥ lim
n→∞

Ega−ε,ε(Xn) = Ega−ε,ε(X) ≥ F (a− ε). (6.6)

If a is a continuity point, then lim infn→∞ Fn(a) ≥ limε→0 F (a− ε) = P(X < a) = P(X ≤ a) = F (a).

Corollary 6.1.5. If Xn =⇒ X, then f(Xn) =⇒ f(X) for any continuous f .
Proof. For any continuous and bounded g, g ◦ f is also continuous and bounded.

Corollary 6.1.6. If Xn
P−→ X then Xn =⇒ X.

Proof. Consider any subsequence Xnj , and observe that Xnj
P−→ X as well. Also, recall that there

exists a further subsequence Xnj(k) −→ X a.s. Thus, for bounded and continuous h, the continuous
mapping theorem and bounded convergence theorem give that Eh(Xnj(k)) −→ Eh(X). Since Eh(Xn)
is a sequence of real numbers, this implies Eh(Xn) −→ Eh(X).

Example 6.1.7. The reverse does not hold. Let X ∼ Gaussian(0, 1) and Xn = −X for n ∈ N. Then,
trivially Fn = F , so Xn =⇒ X, but

P(|Xn −X| > ε) = P(|X| > ε/2) = c > 0. (6.7)
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Lemma 6.1.8. If Xn =⇒ c where c is constant, Xn
P−→ c.

Proof. First, let F be the CDF of the random variable X ≡ c, so that F (y) = I{c ≤ y}. Observe
that F is continuous everywhere except y = c. Now, fix ε > 0.

lim
n→∞

P(|Xn − c| > ε) = lim
n→∞

[P(Xn < c− ε) + P(Xn > c+ ε)]

≤ lim
n→∞

[P(Xn ≤ c− ε/2) + P(Xn > c+ ε)]

= lim
n→∞

Fn(c− ε/2) + 1− lim
n→∞

Fn(c+ ε)

= F (c− ε/2) + 1− F (c+ ε)
= 0.

(6.8)

Theorem 6.1.9 (Slutsky’s Theorem). If Xn =⇒ X and Yn =⇒ c for a constant c,
• Xn + Yn =⇒ X + c,
• XnYn =⇒ Xc,
• Xn/Yn =⇒ X/c if c 6= 0.

Proof.
• Fix ε > 0 and z a continuity point of the CDF of X + c. Observe that Xn ≤ z − c − ε and
Yn ≤ c+ ε implies Xn + Yn ≤ z. Thus,

P(Xn + Yn ≤ z)
≥ P(Xn ≤ z − c− ε ∩ Yn ≤ c+ ε)
= P(Xn ≤ z − c− ε) + P(Yn ≤ c+ ε)− P(Xn ≤ z − c− ε ∪ Yn ≤ c+ ε)
≥ P(Xn ≤ z − c− ε) + P(Yn ≤ c+ ε)− 1
= P(Xn ≤ z − c− ε)− P(Yn > c+ ε).

(6.9)

Now, observe that the CDF of Yn is continuous everywhere except at c. So,

lim
n→∞

P(Yn > c+ ε) = P(Y > c+ ε) = 0. (6.10)

For arbitrarily small ε we can take z − c− ε to be a continuity point of the CDF of X without
loss of generality, so

lim
n→∞

P(Xn ≤ z − c− ε) = P(X ≤ z − c− ε). (6.11)
That is,

lim inf
n→∞

P(Xn + Yn ≤ z) ≥ P(X + c ≤ z − ε). (6.12)
Since z is a continuity point of the CDF of X + c, taking ε→ 0 gives

lim inf
n→∞

P(Xn + Yn ≤ z) ≥ P(X + c ≤ z). (6.13)

Similarly, Xn + Yn ≤ z and Yn ≥ c− ε implies Xn ≤ z − c+ ε, so

P(Xn ≤ z − c+ ε) ≥ P(Xn + Yn ≤ z)− P(Yn < c− ε). (6.14)

Rearranging and taking limits in the same way gives

lim sup
n→∞

P(Xn + Yn ≤ z) ≤ P(X + c ≤ z). (6.15)
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The remaining two are left as exercises.

Remark. We have been somewhat implicitly working with random variables on R, but of course the
definition of weak convergence works just as well for random variables on Rd. In fact, the Skorokhod
Representation Theorem and Portmanteau Lemma can be equivalently shown for the multivariate
case, with the latter implying a multivariate continuous mapping theorem for weak convergence.
Consequently, if (Xn, Yn) =⇒ (X, Y ), then Xn+Yn =⇒ X+Y , XnYn =⇒ XY , and Xn/Yn =⇒ X/Y .
As you’ll see in Exercise 6.8, however, this is not the same as Xn =⇒ X and Yn =⇒ Y .

6.2 Characteristic Functions

Remark. This section requires the use of complex numbers. Recall i is defined as the solution to
x2 = −1, and a complex number x ∈ C is defined by real numbers a, b ∈ R such that x = a+ ib. The
modulus of x is |x| =

√
a2 + b2 and the complex conjugate is x̄ = a− bi. The real and imaginary parts

of x are defined respectively by Re(x) = a and Im(x) = b.

Lemma 6.2.1 (Euler’s Formula). For any x ∈ R,

eix = cos(x) + i sin(x) (6.16)

Proof. See first year calculus book.

Definition 6.2.2. For a random variable taking X taking values in C, we define its expectation by

EX = ERe(X) + iEIm(X). (6.17)

Definition 6.2.3. A random variable X has a unique characteristic function defined by

ϕ(t) = EeitX = E cos(tX) + iE sin(tX). (6.18)

Proposition 6.2.4. A characteristic function ϕ has the following properties:
i) ϕ(0) = 1.

ii) ϕ(−t) = ϕ(t).
iii) |ϕ(t)| ≤ 1.
iv) |ϕ(t+ h)− ϕ(t)| ≤ E

∣∣∣e−ihX − 1
∣∣∣.

v) Eeit(aX+b) = eitbϕ(at).
Proof.

i) By definition.
ii) ϕ(−t) = E[cos(−tX) + i sin(−tX)] = E[cos(tX)− i sin(tX)].

iii) |ϕ(t)| =
∣∣∣EeitX ∣∣∣ ≤ E

∣∣∣eitX ∣∣∣ = 1, using that
√
x2 + y2 is convex.

iv) |ϕ(t+ h)− ϕ(t)| =
∣∣∣EeitXeihX − EeitX

∣∣∣ ≤ E
[∣∣∣eitX ∣∣∣ ∣∣∣eihX − 1

∣∣∣] = E
∣∣∣e−ihX − 1

∣∣∣.
v) By definition.
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Proposition 6.2.5. If X and Y are independent with characteristic functions ϕX and ϕY , then
Z = X + Y has characteristic function

ϕZ(t) = ϕX(t)ϕY (t). (6.19)

Proof.
ϕZ(t) = E[eit(X+Y )] = E[eitXeitY ] = E[eitX ]E[eitY ] = ϕX(t)ϕY (t). (6.20)

Theorem 6.2.6. Common distributions have the following characteristic functions.
• X ∼ Ber(p): ϕ(t) = 1− p+ peit.
• X ∼ Pois(λ): ϕ(t) = exp{λ(eit − 1)}.
• X ∼ Exp(λ): ϕ(t) = λ

λ−it .
• X ∼ Gaussian(µ, σ2): ϕ(t) = eiµt−σ

2t2/2.
Proof. Exercise.
(Treat i as a constant – we won’t worry about the technical details of complex analysis here.)

Theorem 6.2.7. Let X be a random variable and consider a function f : [a, b] × R → R such that
Ef(t,X) < ∞ and ∂

∂t
f(t,X) = f ′(t,X) exists for all t ∈ (a, b). Further, suppose there is a random

variable Y with EY <∞ and |f ′(t,X)| ≤ Y a.s. for t ∈ (a, b). Then, for all t ∈ (a, b),

∂

∂t
Ef(t,X) = Ef ′(t,X). (6.21)

Proof. First, observe that
f ′(t,X) = lim

h→0

f(t+ h,X)− f(t,X)
h

, (6.22)

so ∣∣∣∣∣f(t+ h,X)− f(t,X)
h

∣∣∣∣∣ ≤ Y (6.23)

for small h. Then, using the dominated convergence theorem,

∂

∂t
Ef(t,X) = lim

h→0

Ef(t+ h,X)− Ef(t,X)
h

= lim
h→0

E
f(t+ h,X)− f(t,X)

h

= E lim
h→0

f(t+ h,X)− f(t,X)
h

= Ef ′(t,X).

(6.24)

Proposition 6.2.8. If X is a random variable with E |X|k <∞, then for 0 ≤ j ≤ k,

ϕ
(j)
X (t) = E[(iX)jeitX ]. (6.25)
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Proof. This is proved by induction. When j = 0, this is just the definition of ϕ. Suppose it holds
for some j. Then,

ϕ
(j+1)
X (t) = ∂

∂t
ϕ

(j)
X (t)

= ∂

∂t
E[(iX)jeitX ]

= E
[
(iX)j ∂

∂t
eitX

]
= E[(iX)j+1eitX ],

(6.26)

where we used the previous proposition to swap the order of expectation and differentiation.

Theorem 6.2.9 (Continuity Theorem). Let µ, µ1, µ2, . . . be probability measures with character-
istic functions ϕ, ϕ1, ϕ2, . . . . Then, µn =⇒ µ if and only if ϕn(t) −→ ϕ(t) for all t ∈ R.
Proof. Beyond the scope of this course.

Lemma 6.2.10. If Xn, Yn are independent for all n and X, Y are independent with Xn =⇒ X and
Yn =⇒ Y , then

Xn + Yn =⇒ X + Y. (6.27)
Proof. Using characteristic functions,

lim
n→∞

ϕXn+Yn(t) = lim
n→∞

ϕXn(t)ϕYn(t) = ϕX(t)ϕY (t) = ϕX+Y (t). (6.28)

Then apply the continuity theorem.

6.3 Central Limit Theorem

Lemma 6.3.1. For any random variable with E |X|k <∞ for 0 ≤ k ≤ m,

ϕX(t) =
m∑
k=0

(it)k
k! EXk + o(|t|m). (6.29)

Proof. Exercise. Hint: use Taylor series error approximation.

Theorem 6.3.2. If X1, X2, . . . are i.i.d. with EXn = 0 and EX2
n = σ2 <∞,

Yn = 1√
n

n∑
i=1

Xi =⇒ Gaussian(0, σ2). (6.30)

Proof. Using the previous lemma with m = 2,

ϕXi(t) = 1− 1
2σ

2t2 + o(t2). (6.31)

Thus,
lim
n→∞

ϕYn(t) = lim
n→∞

[ϕXi(t/
√
n)]n = lim

n→∞

[
1− 1

2nσ
2t2 + o(t2/n)

]n
= e−σ

2t2/2. (6.32)

This is the characteristic function of Gaussian(0, σ2), so the result follows from the continuity theorem.
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6.4 Exercises

Exercise 6.1. A Cauchy random variable has density defined by f(x) = 1
π(1+x2) for all x ∈ R. Show

that for all t 6= 0, the MGF MX(t) = EetX =∞.
Note: this is just a calculus question to motivate why we use characteristic functions. I won’t ask you
something like this on an exam.

Exercise 6.2 (Durrett 3.3.9). Suppose Xn ∼ Gaussian(0, σ2
n) and Xn =⇒ X for some random

variable X. Show that σn −→ σ for some σ ∈ [0,∞).

Exercise 6.3. Prove Scheffé’s Theorem for discrete pmfs instead of densities.

Exercise 6.4. Find an example of random variables Xn with densities fn such that Xn =⇒ Unif(0, 1)
but {x : fn(x) −→ 1} = ∅.

Exercise 6.5. Prove that if Pn =⇒ P and Pn =⇒ P′, then P = P′. Hint: use the Portmanteau
lemma.

Exercise 6.6. Prove that if Fn =⇒ F and x is such that there is at most one a ∈ R with F (a) = x,
then F−1

n (x) −→ F−1(x). Hint: For any ε > 0, you can choose a y such that F is continuous at y
(why?) and F−1(x)− ε < y < F−1(x).

Exercise 6.7. Prove the remainder of Theorem 6.1.9.

Exercise 6.8. Find an example such that Xn =⇒ X and Yn =⇒ Y but Xn + Yn 6=⇒ X + Y .

Exercise 6.9. Prove Theorem 6.2.6.

Exercise 6.10. Prove Lemma 6.3.1.

Exercise 6.11. Let X1, X2, . . . be i.i.d. with characteristic function ψ. Show that if ψ′(0) = ia, then

Sn
n

P−→ a.
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LECTURE 7

CONDITIONAL EXPECTATION

7.1 Definition and Properties

Definition 7.1.1. For random variables X ∈ Rd1 and Y ∈ Rd2 , we define a conditional expectation
of X given Y by any random variable Z satisfying:

a) there exists g : Rd2 → Rd1 such that Z = g(Y ) and
b) E[ZI{Y ∈ A}] = E[XI{Y ∈ A}] for all A ⊆ Rd2 .

We denote such a Z by E[X | Y ].

Example 7.1.2. Ω = [−1, 1] and P is uniform distribution. Define

X(ω) = −1/2 + I{ω ∈ [−1,−1/2] ∪ [0, 1/2]}+ 2I{ω ∈ [−1/2, 0]}
Y (ω) = I{ω ≥ 0}
Z(ω) = 1− Y (ω).

Observe that E[X | Y ] = Z and P(X = Z) = 0.

Proposition 7.1.3. Conditional expectation satisfies the following:
i) X ≥ 0 a.s. implies E[X | Y ] ≥ 0 a.s.;

ii) E [E[X | Y ]] = EX;
iii) E[aX1 + bX2 | Y ] = aE[X1 | Y ] + bE[X2 | Y ] for all a, b ∈ R;
iv) X independent of Y implies E[X | Y ] = EX;
v) E |X| <∞ implies E |E[X | Y ]| <∞.

Note we are considering d1 = d2 = 1 here, but analogous results hold for the multivariate case.
Proof.

i) Suppose E[X | Y ] = g(Y ) and consider A = {x ∈ R : g(x) ≤ 0}. Then,
E[ZI{Y ∈ A}] = E[g(Y )I{g(Y ) ≤ 0}] ≤ 0, and E[ZI{Y ∈ A}] = E[XI{Y ∈ A}] ≥ 0, so
E[ZI{Y ∈ A}] = 0. Thus, since ZI{Z ≤ 0} ≤ 0, ZI{Z ≤ 0} = 0 a.s., so Z ≥ 0 a.s.

ii) Take A = R.
iii) Set Z = aE[X1 | Y ] + bE[X2 | Y ]. For any A ⊆ R,

E[ZI{Y ∈ A}] = E[(aE[X1 | Y ] + bE[X2 | Y ]) I{Y ∈ A}]
= aE [E[X1 | Y ]I{Y ∈ A}] + bE [E[X2 | Y ]I{Y ∈ A}]
= aE[X1I{Y ∈ A}] + bE[X2I{Y ∈ A}]
= E[(aX1 + bX2) I{Y ∈ A}].

(7.1)

iv) Recall that X independent of f(Y ) for any f , so for any A ⊆ R,

E[XI{Y ∈ A}] = E[I{Y ∈ A}]E[X] = E [(EX)I{Y ∈ A}] .
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v) Again let E[X | Y ] = g(Y ). Define A = {y ∈ R : g(y) ≥ 0}.

E |E[X | Y ]| = E[E[X | Y ]+] + E[E[X | Y ]−]
= E[g(Y )I{g(Y ) ≥ 0}]− E[g(Y )I{g(Y ) < 0}]
= E[g(Y )I{Y ∈ A}]− E[g(Y )I{Y ∈ Ac}]
= E[XI{Y ∈ A}]− E[XI{Y ∈ Ac}]
≤ E[|X| I{Y ∈ A}] + E[|X| I{Y ∈ Ac}]
= E |X| .

(7.2)

Theorem 7.1.4. Conditional expectation is unique. That is, for any X, Y , Z1 = E[X | Y ] and
Z2 = E[X | Y ] implies Z1 = Z2 a.s.
Proof.

0 = E[0 | Y ] = E[X −X | Y ] = E[X | Y ]− E[X | Y ] = Z1 − Z2. (7.3)

Lemma 7.1.5. For any f : R→ R, if E |X| <∞ and E |Xf(Y )| <∞, E[f(Y )X | Y ] = f(Y )E[X | Y ].
Proof. Let Z = f(Y )E[X | Y ]. Consider any A ⊆ R. Then,

E[ZI{Y ∈ A}] = E[f(Y )E[X | Y ]I{Y ∈ A}] = E[h(Y )E[X | Y ]], (7.4)

where h(Y ) = f(Y )I{Y ∈ A}.

First, suppose f(Y ) = I{Y ∈ B} for some B ⊆ R. Then,

E[h(Y )E[X | Y ]] = E[I{Y ∈ A ∩B}E[X | Y ]] = E[I{Y ∈ A ∩B}X] = E[f(Y )XI{Y ∈ A}]. (7.5)

Next, suppose f(Y ) = ∑m
i=1 biI{Y ∈ Bi}. By linearity of expectation and the result for indicator f ,

the result holds.

If f(Y ) ∈ [0,M ] and X ≥ 0 a.s., take fn ↑ f where fn are simple functions. Then, by MCT,

E[fn(Y )E[X | Y ]I{Y ∈ A}] −→ E[f(Y )E[X | Y ]I{Y ∈ A}] (7.6)

and
E[fn(Y )XI{Y ∈ A}] −→ E[f(Y )XI{Y ∈ A}]. (7.7)

Thus, since for all n,

E[fn(Y )E[X | Y ]I{Y ∈ A}] = E[fn(Y )XI{Y ∈ A}], (7.8)

we have
E[f(Y )E[X | Y ]I{Y ∈ A}] = E[f(Y )XI{Y ∈ A}]. (7.9)

Next, if f(Y ) ∈ [0,M ] and X ∈ R, repeat this using X+ and X−.

Finally, for integrable f , write f = f+ − f−, and use a sequence of bounded functions.
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Lemma 7.1.6. Consider integrable random variables X, Y, Z. Then,

E[E[X|Y ] | Y, Z] = E[E[X|Y, Z] | Y ] = E[X | Y ]. (7.10)
Proof. Consider any A ⊆ R2. Then, E[X | Y ] = g(Y ) for some g, so we can define h(Y, Z) = g(Y ).
Thus, trivially, E[E[X|Y ] | Y, Z] = E[X | Y ].

For the second equality, consider any A ⊆ R. Then,

E[I{Y ∈ A}E[X|Y ]] = E[I{Y ∈ A}X]
= E[E[I{Y ∈ A}X | Y, Z]]
= E[I{Y ∈ A}E[X | Y, Z]].

(7.11)

7.2 Computation

Definition 7.2.1. For random variables X, Y and sets A,B, if P(Y ∈ B) > 0 then define the
conditional probability (with respect to an event) by

P(X ∈ A | Y ∈ B) = P(X ∈ A, Y ∈ B)
P(Y ∈ B) . (7.12)

Definition 7.2.2. For random variables X, Y and a set A, define the conditional probability (with
respect to a random variable) by

P(X ∈ A | Y ) = E[I{X ∈ A} | Y ]. (7.13)

Theorem 7.2.3. If X and Y have joint density fX,Y and marginal densities fX and fY ,

E[X | Y ] =
∫
R
x
fX,Y (x, Y )
fY (Y ) dx. (7.14)

Proof. For any A ⊆ R,

E
[(∫

R
x
fX,Y (x, Y )
fY (Y ) dx

)
I{Y ∈ A}

]
=
∫
A

(∫
R
x
fX,Y (x, y)
fY (y) dx

)
fY (y)dy

=
∫
R2
xI{y ∈ A}fX,Y (x, y)dxdy

= E[XI{Y ∈ A}].

(7.15)

Definition 7.2.4. For random variables X and Y , define the conditional variance by

Var(X | Y ) = E[(X − E[X | Y ])2 | Y ]. (7.16)

Theorem 7.2.5. If X is a random variable with Var(X) <∞, then for all Y

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]). (7.17)
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Proof. Observe that
Var(X) = E[(X − E[X])2]

= E[E[(X − E[X])2 | Y ]]
= E[E[(X − E[X | Y ] + E[X | Y ]− E[X])2 | Y ]]
= E[E[(X − E[X | Y ])2 | Y ]] + E[E[(E[X | Y ]− E[X])2 | Y ]]

+ 2E[E[(X − E[X | Y ])(E[X | Y ]− E[X]) | Y ]]
= E[Var(X | Y )] + Var(E[X | Y ]) + 2E[E[(X − E[X | Y ])(E[X | Y ]− E[X]) | Y ]].

(7.18)

Then, it remains to check that
E[E[(X − E[X | Y ])(E[X | Y ]− E[X]) | Y ]]

= E[E[XE[X | Y ]− (E[X | Y ])2 −XE[X] + E[X]E[X | Y ] | Y ]]
= E[E[XE[X | Y ] | Y ]− E[(E[X | Y ])2 | Y ]− E[XE[X] | Y ] + E[E[X]E[X | Y ] | Y ]]
= E[(E[X | Y ])2 − (E[X | Y ])2 − E[X]E[X | Y ] + E[X]E[X | Y ]]
= 0.

(7.19)

7.3 Conditional Limit Theorems

Proposition 7.3.1 (Conditional Jensen’s Inequality). If f is a convex function and X is a
random variable such that f(X) is integrable, for any Y

f(E[X|Y ]) ≤ E[f(X)|Y ]. (7.20)

The inequality is flipped if f is concave.
Proof. Since f is convex, we can write f(x) = sup{`(x) : ` is linear, `(x) ≤ f(x) ∀x}. Then, for all
such `,

E[f(X) | Y ] ≥ E[`(X) | Y ] = `(E[X | Y ]). (7.21)
Thus,

E[f(X) | Y ] ≥ sup
`
`(E[X | Y ]) = f(E[X | Y ]). (7.22)

If concave then −f is convex.

Theorem 7.3.2 (Conditional Monotone Convergence Theorem). If Xn ≥ 0 a.s. and Xn ↑ X
a.s., for any Y

E[Xn | Y ] ↑ E[X | Y ]. (7.23)
Proof. Since X −Xn ≥ 0 a.s., E[Xn | Y ] ≤ E[X | Y ]. Define Z = limn→∞ E[Xn | Y ]. Clearly, Z =
g(Y ) for some g, and E[Xn | Y ] ↑ Z. Finally, for any A ⊆ R, E[E[Xn | Y ]I{Y ∈ A}] = E[XnI{Y ∈ A}].
Thus,

E
[

lim
n→∞

E[Xn | Y ]I{Y ∈ A}
]

= lim
n→∞

E[E[Xn | Y ]I{Y ∈ A}] (by MCT)

= lim
n→∞

E[XnI{Y ∈ A}]

= E[XI{Y ∈ A}] (by MCT).

(7.24)
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Theorem 7.3.3 (Conditional Fatou’s Lemma). If Xn ≥ 0 a.s. for all n, for any Y

lim inf
n−→∞

E[Xn | Y ] ≥ E[lim inf
n−→∞

Xn | Y ]. (7.25)

Proof. For each n, define Zn = infm≥nXm. Clearly, Xn ≥ Zn a.s. and Zn ↑ lim infn−→∞Xn = Z a.s.
Thus, by conditional MCT, E[Zn | Y ] ↑ E[Z | Y ]. That is,

E[lim inf
n→∞

Xn | Y ] = E[Z | Y ] = lim
n→∞

E[Zn | Y ] ≤ lim inf
n→∞

E[Xn | Y ]. (7.26)

Theorem 7.3.4 (Conditional Dominated Convergence Theorem). If Xn −→ X a.s. and
|Xn| ≤ Z a.s. for some integrable Z, for all Y

E[X|Y ] = lim
n→∞

E[Xn | Y ]. (7.27)

Proof. Observe that |E[Xn | Y ]| ≤ E[|Xn| | Y ] ≤ E[Z | Y ] a.s., and E[E[Z | Y ]] = EZ <∞. So,

E
[

lim
n→∞

E[Xn | Y ]I{Y ∈ A}
]

= lim
n→∞

E[E[Xn | Y ]I{Y ∈ A}] (by DCT)

= lim
n→∞

E[XnI{Y ∈ A}]

= E[XI{Y ∈ A}] (by DCT).

(7.28)
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7.4 Exercises

Exercise 7.1 (Conditional Chebyshev’s). Prove that if a > 0 then

P(|X| ≥ a | Y ) ≤ 1
a2E(X2 | Y ).

Exercise 7.2 (Conditional Cauchy-Schwarz). Prove that for any random variables X, Y, Z,(
E[XY | Z]

)2
≤ E[X2 | Z]E[Y 2 | Z].

Exercise 7.3 (Rosenthal 13.4.6). Find an example of random variables X, Y, Z such that X and
Y are independent but E[X | Z] and E[Y | Z] are not.

Exercise 7.4 (Rosenthal 13.4.10). Find an example of X and Y which are not independent but
E[X | Y ] = EX a.s.

Exercise 7.5 (Rosenthal 13.4.11). Show that if E[X | Y ] = EX a.s. then E(XY ) = E(X)E(Y ),
but the reverse implication need not hold.

Exercise 7.6. Review how to compute conditional expectation. (e.g., Exercises from Section 3.5 of
Evans and Rosenthal.)
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LECTURE 8

MARKOV CHAINS

8.1 Random Walks

Definition 8.1.1. Consider X0 = 0 and for each t, Xt is 1 with probability p and -1 with probability
1− p. Then, Sn = ∑n

t=0Xt is called a simple random walk.

Proposition 8.1.2. Let Sn be a simple random walk. For any a ∈ N, if Ea = P(∃n ∈ N s.t. Sn = a),

Ea =
 1 if p ≥ 1/2

( p
1−p)a if p < 1/2

. (8.1)

Proof. First, observe that Ea = (E1)a for a > 0. Now, conditioning on X1,

E1 = E
[
I{∃n ∈ N s.t. Sn = 1} | X1 = 1

]
P(X1 = 1)

+ E
[
I{∃n ∈ N s.t. Sn = 1} | X1 = −1

]
P(X1 = −1)

= 1 · p+ E
[
I{∃n− 1 ∈ N s.t. Sn−1 − 1 = 1} | X1 = −1

]
(1− p)

= p+ E2(1− p)
= p+ (1− p)(E1)2.

(8.2)

Solving this quadratic gives

E1 =
1±

√
1− 4(1− p)p
2(1− p) . (8.3)

Now, observe that 1− 4(1− p)p = 1− 4p+ 4p2 = (2p− 1)2. Thus, possible solutions are

E1 = 1± (2p− 1)
2(1− p) =


p

1−p
1

. (8.4)

If p ≥ 1/2, then p/(1 − p) ≥ 1, so we get E1 = 1. That is, the random walk will hit every
a ∈ N a.s. Now, consider p < 1/2. Then, both solutions of (8.4) are valid, so we need to do more
work to determine which is correct. We define Ea(n) = P(∃m ≤ n s.t. Sm = a). Observe that
E1(1) = p ≤ p

1−p . We will now use induction to show E1(n) ≤ p
1−p for all n ∈ N. The induction

hypothesis is E1(n) ≤ p
1−p . Then, by the same conditioning as above,

E1(n+ 1) = p+ (1− p)E2(n)
≤ p+ (1− p)E2

1(n)

≤ p+ (1− p)
(

p

1− p

)2

= p(1− p) + p2

1− p
= p

1− p.

(8.5)
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This completes the induction. Finally, since E1(n) is increasing, by continuity of measure

E1 = lim
n→∞

E1(n) ≤ p

1− p. (8.6)

Combined with (8.4), this gives the result.

Proposition 8.1.3 (Gambler’s Ruin). Consider p ∈ [0, 1] and and N ∈ N. Let Xn be a process
where for all i ∈ {1, . . . , N−1}, P[Xn+1 = i+1 | Xn = i] = p and P[Xn+1 = i−1 | Xn = i] = 1−p = q,
but P[Xn+1 = 0 | Xn = 0] = 1 and P[Xn+1 = N | Xn = N ] = 1. Then,

Pi = P[∃n ≥ 1 s.t. Xn = N | X0 = i] =


1−(q/p)i
1−(q/p)N if p 6= 1/2
i
N

if p = 1/2.
(8.7)

Proof. For i ∈ {1, . . . , N − 1}, Pi = pPi+1 + qPi−1. Writing Pi = pPi + qPi and combining these two
equations gives Pi+1 − Pi = (q/p)(Pi − Pi−1). Using that P0 = 0,

P2 − P1 = (q/p)(P1 − P0) = (q/p)P1

P3 − P2 = (q/p)(P2 − P1) = (q/p)2P1
...

Pi − Pi−1 = (q/p)(Pi−1 − Pi−2) = (q/p)i−1P1
...

PN − PN−1 = (q/p)(PN−1 − PN−2) = (q/p)N−1P1.

(8.8)

Then,

Pi − P1 =
i∑

k=2
Pk − Pk−1 =

i∑
k=2

(q/p)k−1P1 = P1

i−1∑
k=1

(q/p)k =


(q/p)i−(q/p)
(q/p)−1 P1 if q 6= p

(i− 1)P1 if q = p.
(8.9)

That is,

Pi =


1−(q/p)i
1−(q/p) P1 if q 6= p

iP1 if q = p.
(8.10)

Finally, since PN = 1,

P1 =


1−(q/p)
1−(q/p)N if q 6= p
1
N

if q = p.
(8.11)

8.2 Chapman-Kolmogorov Equations

Definition 8.2.1. A stochastic process satisfies the Markov property if for all t,
E[Xt | Xt−1, Xt−2, . . . , X0] = E[Xt | Xt−1].

Definition 8.2.2. Consider a stochastic process Xn taking values in a countable state space S and
satisfying the Markov property with the added requirement that the probability of moving from state
i to state j is independent of the time n. Such a process is called a Markov chain, and is defined by
the transition matrix P with entries Pij = P[Xn = j | Xn−1 = i].
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Lemma 8.2.3. A simple random walk is a Markov chain.
Proof.

E[Sn | Sn−1, . . . , S0] = (Sn−1 + 1)(1/2) + (Sn−1 − 1)(1/2) = E[Sn | Sn−1]. (8.12)
Then, in the transition matrix, Pi,i+1 = p = 1− Pi,i−1 and Pij = 0 otherwise.

Theorem 8.2.4. Define Pn to be the n-step transition matrix, so that P (n)
ij = P(Xk+n = j | Pk = i).

Then, for any states i, j ∈ S and n,m > 0,

P
(n+m)
ij =

∑
k∈S

P
(n)
ik P

(m)
kj . (8.13)

Proof.
P

(n+m)
ij = P(Xn+m = j | X0 = i)

= P (∪k∈S [Xn+m = j,Xn = k] | X0 = i)
=
∑
k∈S

P (Xn+m = j,Xn = k | X0 = i)

=
∑
k∈S

P (Xn+m = j | Xn = k,X0 = i)P (Xn = k | X0 = i)

=
∑
k∈S

P (Xn+m = j | Xn = k)P (Xn = k | X0 = i)

=
∑
k∈S

P
(m)
jk P

(n)
ik .

(8.14)
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8.3 Classification Properties

Definition 8.3.1. We say state j is accessible from state i if for some n ≥ 0, P (n)
ij > 0. If i is also

accessible from j, we say they communicate.

Definition 8.3.2. For any event A, use Pi(A) = P(A | X0 = i) to denote the probability conditional
on the initial state. Also, let f (n)

ij = Pi(Xn = j ∩ Xm 6= j ∀1 ≤ m ≤ n − 1) and fij = ∑∞
n=1 f

(n)
ij =

Pi(∃n ≥ 1 s.t. Xn = j). Then, a state i is recurrent if it always returns back to itself, so fii = 1, and
is transient if it is not recurrent, so fii < 1.

Theorem 8.3.3. A state i is transient if and only if Pi(Xn = i i.o.) = 0, which occurs if and only if∑∞
n=1 P

(n)
ii < ∞. A state i is recurrent if and only if Pi(Xn = i i.o.) = 1, which occurs if and only if∑∞

n=1 P
(n)
ii =∞.

Proof. First, by continuity of probabilities,

Pi(Xn = i i.o.) = lim
k→∞

Pi(|{n ≥ 1 : Xn = i}| ≥ k) = lim
k→∞

(fii)k =
 0 fii < 1

1 fii = 1
. (8.15)

Next, recalling EX = ∑∞
k=1 P(X ≥ k) for non-negative discrete random variables,

∞∑
n=1

P
(n)
ii =

∞∑
n=1

Pi(Xn = i)

=
∞∑
n=1

EiI{Xn = i}

= Ei
∞∑
n=1

I{Xn = i}

= Ei |{n ≥ 1 : Xn = i}|

=
∞∑
k=1

Pi(|{n ≥ 1 : Xn = i}| ≥ k)

=
∞∑
k=1

(fii)k

=


fii
1−fii <∞, fii < 1
∞, fii = 1

.

(8.16)

Definition 8.3.4. A Markov chain is irreducible if for all states i and j, fij > 0.
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Theorem 8.3.5. The following are equivalent for an irreducible Markov chain:
i) For all states i and j, fij = 1;

ii) There exists a state k such that fkk = 1;
iii) There exist states k and ` such that ∑∞n=1 P

(n)
k` =∞;

iv) For all states i and j, ∑∞n=1 P
(n)
ij =∞.

Proof. i) implies ii) is obvious and ii) implies iii) follows from the previous theorem. Suppose iii)
holds for some k, ` ∈ S and fix i, j ∈ S. By irreducibility, there exists m, r > 0 such that P (m)

ik > 0
and P

(r)
`j > 0. Then, by Chapman-Kolmogorov, for any n > 0 we have

P
(m+n+r)
ij =

∑
u∈S

P
(m)
iu P

(n+r)
uj =

∑
u,v∈S

P
(m)
iu P (n)

uv P
(r)
vj ≥ P

(m)
ik P

(n)
k` P

(r)
`j . (8.17)

Thus,
∞∑
n=1

P
(n)
ij =

∞∑
n=1−(m+r)

P
(m+n+r)
ij ≥

∞∑
n=1

P
(m)
ik P

(n)
k` P

(r)
`j = P

(m)
ik P

(r)
`j

∞∑
n=1

P
(n)
k` =∞. (8.18)

Finally, suppose iv) holds and by way of contradiction suppose fij < 1 for some i, j ∈ S. Then,

1− fjj = Pj(∀n ≥ 1, Xn 6= j) ≥ Pj(Xn = i before Xn = j)Pi(∀n ≥ 1, Xn 6= j) > 0, (8.19)

where the last inequality is by irreducibility and the contradiction assumption. However, this implies
that ∑∞n=1 P

(n)
jj <∞ by the previous theorem, which is a contradiction.

Definition 8.3.6. If any of properties i) to iv) hold, the Markov chain itself is said to be recurrent.

8.4 Stationarity Convergence

Definition 8.4.1. A probability distribution π on the state space is the stationary distribution of a
Markov chain Xn if ∑i∈S πiPij = πj for all j ∈ S. This can be written in matrix form as πP = π.

Definition 8.4.2. The period of a state i, denoted by d(i), is the greatest common divisor of
{n ≥ 1 : P (n)

ii > 0}.

Example 8.4.3.

P =

 0 1 0
1/2 0 1/2
0 0 1

 . (8.20)

Definition 8.4.4. A Markov chain is aperiodic if every state has period 1. Otherwise, it is periodic.

Lemma 8.4.5. If fij > 0 and fji > 0, states i and j have the same period.

Proof. There must exist some r, s such that P (r)
ij > 0 and P

(s)
ji > 0. Then, P (r+s)

ii ≥ P
(r)
ij P

(s)
ji > 0, so

r+ s is a multiple of d(i). Now, for any m ∈ {n ≥ 1 : P (n)
jj > 0}, P (r+m+s)

ii > P
(r)
ij P

(m)
jj P

(s)
ji > 0. Thus,

r + m + s is a multiple of d(i), which implies m is a multiple of d(i). That is, d(j) ≥ d(i). However,
this argument was symmetric in i and j, so the reverse inequality can also be shown.
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Corollary 8.4.6. If a Markov chain is irreducible, all of its states have the same period.

Lemma 8.4.7. If a Markov chain is irreducible and has a stationary distribution π, then it is recur-
rent.
Proof. Suppose by way of contradiction it is not recurrent. Then, for all i, j ∈ S, ∑∞n=1 P

(n)
ij < ∞,

so limn→∞ P
(n)
ij = 0. But, since πj = ∑

i∈S πiP
(n)
ij for all n, taking n→∞ shows πj = 0 for all j. This

contradicts ∑j∈S πj = 1.

Theorem 8.4.8. If a Markov chain is irreducible and aperiodic with stationary distribution π, then
for all states i and j

lim
n→∞

Pi(Xn = j) = πj. (8.21)
Proof. Not too hard, but too long for this course.

8.5 Stationarity Existence

Definition 8.5.1. The mean recurrence time of a state i is defined by

mi = Ei[inf{n ≥ 1 : Xn = i}]. (8.22)

Definition 8.5.2. Observe that if i is transient, then mi =∞. If i is recurrent, then we say it is null
recurrent if mi =∞ and positive recurrent if mi <∞.

Definition 8.5.3. A state i is ergodic if it is aperiodic and positive recurrent. If all states are ergodic,
then we say the entire Markov chain is ergodic.

Theorem 8.5.4. If a Markov chain is irreducible and each state i is positive recurrent, then there
exists a unique stationary distribution π with πi = 1/mi. Further, if each state is aperiodic (i.e., the
Markov chain is ergodic), then limn→∞ P

(n)
ij = πj = 1/mj.

Proof. Not too hard, but too long for this course.
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8.6 Exercises

Exercise 8.1. Solve for the stationary distribution of the Markov chain with

P =

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

 .
Exercise 8.2 (Ross 4.16). Show that if state i is recurrent and state i does not communicate with
state j, then Pij = 0.

Exercise 8.3 (Ross 4.20). A Markov chain is doubly stochastic if the sum over columns is also one;
that is, ∑i∈S Pij = 1 for all j ∈ S. Show that if such a chain is irreducible and aperiodic with M
states that the limiting probabilities are given by πj = 1/M for all j ∈ S.

Exercise 8.4 (Ross 4.59). Recall the Gambler’s Ruin setup, and define

Mi = Ei[inf{n ≥ 0 : Xn = N or Xn = 0}].

Show that

Mi =


i
q−p −

N
q−p

1−(q/p)i
1−(q/p)N if p 6= 1/2

i(N − 1) if p = 1/2.

Exercise 8.5 (Rosenthal 8.5.10). Show that for any Markov chain on a finite state space, at least
one state must be recurrent. Also, give an example where exactly one state is recurrent. Finally, give
an example where the state space is countably infinite and all states are transient.

Exercise 8.6 (Rosenthal 8.5.18). Prove that if fij > 0 and fji = 0 then i is transient.

Exercise 8.7 (Rosenthal 8.5.19). Prove that for a Markov chain with a finite state space, no states
are null recurrent.

Exercise 8.8. Show that a simple random walk is recurrent but does not have a stationary distribu-
tion.
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LECTURE 9

QUEUEING THEORY

9.1 Exponential Distribution

Definition 9.1.1. We say a nonnegative random variable X ∼ Exp(λ) for some λ > 0 if it has density
f(x) = λe−λx. Observe then it has CDF F (x) = 1− e−λx, mean EX = 1/λ, and MGF MX(t) = λ

λ−t .

Lemma 9.1.2. X ∼ Exp(λ) for some λ > 0 if and only if it has the memoryless property:

P[X > s+ t | X > t] = P[X > s]. (9.1)

Proof. To show the first direction,

P[X > s+ t | X > t] = P[X > s+ t,X > t]
P[X > t] = P[X > s+ t]

P[X > t] = e−λ(s+t)

e−λ(t) = e−λs = P[X > s]. (9.2)

For the reverse direction, suppose X has the memory less property, and define S(t) = P[X > t].
Then,

P[X > s+ t | X > t] = P[X > s] ⇐⇒
P[X > s+ t,X > t]

P[X > t] = P[X > s] ⇐⇒

S(s+ t) = S(s)S(t).

(9.3)

This implies that for all a ∈ Q+, S(a) = S(1)a = ea log(S(1)) = e−λa, where λ = − log(S(1)). To extend
this to all a > 0, it remains to observe that S(a) is monotonically decreasing.

Definition 9.1.3. We say that Y ∼ Gamma(λ, α) for λ, α > 0 if it has density f(y) = λe−λy (λy)α−1

Γ(α) ,
where Γ(α) =

∫∞
0 e−xxα−1dx and Γ(n) = (n− 1)! for integer n.

Lemma 9.1.4. If X1, . . . , Xn ∼ Exp(λ), then Y = ∑n
i=1Xi ∼ Gamma(λ, n).

Proof. We will prove this by induction. For n = 1, this is trivially true. Suppose this holds for n ≥ 2.
Then, by the convolution formula for densities (just differentiate the normal convolution formula),

fX1+···Xn+Xn+1(t) =
∫ ∞

0
fXn+1(t− s)fX1+···Xn(s)I{t− s ≥ 0}ds

=
∫ t

0
λe−λ(t−s)λe−λs

(λs)n−1

(n− 1)!ds

= λe−λt
λn

(n− 1)!

∫ t

0
sn−1ds

= λe−λt
(λt)n
n! .

(9.4)
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9.2 Poisson Processes

Definition 9.2.1. Let N(t) denote the number of times some event has occurred by time t. We call
{N(t), t ≥ 0} a Poisson process if

a) N(0) = 0;
b) N(t1)−N(t0) is independent from N(s1)−N(s0) whenever (t0, t1] ∩ (s0, s1] = ∅;
c) P[N(s+ t)−N(s) = n] = e−λt (λt)n

n! for all s, t ≥ 0.

Proposition 9.2.2. N(t) is a Poisson process if and only if
i) N(0) = 0;

ii) N(t1)−N(t0) is independent from N(s1)−N(s0) whenever (t0, t1] ∩ (s0, s1] = ∅;
iii) For any s, N(s+ t)−N(s) has the same distribution for all t ≥ 0;
iv) P[N(h) = 1] = λh+ o(h);
v) P[N(h) ≥ 2] = o(h).

Proof. Beyond the scope of this course.

Proposition 9.2.3. Let E0 = 0 and En denote the time of the nth event in a Poisson process with
paramter λ > 0, and Tn = En − En−1. Then, for all n, Tn ∼ Exp(λ), and are i.i.d..
Proof. Observe that P[T1 > t] = P[N(t) = 0] = e−λt. Then,

P[T2 > t] = E
[
P[T2 > t | T1]

]
. (9.5)

Now, notice that if T1 = s, then T2 > t if and only if N(s + t) − N(s) = 0, which occurs with
probability e−λt regardless of s. Thus,

E
[
P[T2 > t | T1]

]
= e−λt. (9.6)

This argument can be repeated up to Tn.

Corollary 9.2.4. Sn = ∑n
i=1 Ti ∼ Gamma(λ, n). That is, the amount of time until the nth event has

a gamma distribution.

9.3 Continuous-Time Markov Chains

Definition 9.3.1. A continuous-time Markov chain is a sequence of random variables {X(t) : t ≥ 0}
taking values in S where for all s, t ≥ 0 and deterministic functions x : [0,∞)→ S,

P(X(t+ s) = j | X(s) = i,X(u) = x(u) ∀u ∈ [0, s)) = P(X(t+ s) = j | X(s) = i). (9.7)

We again suppose that the transition probabilities are homogeneous in time, so that

P(X(t+ s) = j | X(s) = i) = Pi(X(t) = j) = Pij(t). (9.8)
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Corollary 9.3.2. For each state i ∈ S, let Ti be the time it takes for the process to move into a new
state j. Then, Ti follows the exponential distribution with some rate νi.
Proof. Observe that Ti will have the memoryless property.

Definition 9.3.3. We define qij = νiPij to be the instantaneous transition rates, where Pij is the
probability that the next state after state i is state j (regardless of how long it takes to change states).

Lemma 9.3.4. It holds that

lim
h→0

1− Pii(h)
h

= νi and lim
h→0

Pij(h)
h

= qij. (9.9)

Proof. Since the length of transitions is exponential,

P(Ti > h) = e−νih =
∞∑
t=0

(−1)t (νih)t
t! = 1− νih+ o(h). (9.10)

Thus,
lim
h→0

1− Pii(h)
h

= lim
h→0

P(Ti ≤ h)
h

= lim
h→0

νih+ o(h)
h

= νi. (9.11)

Similarly,
lim
h→0

Pij(h)
h

= lim
h→0

P(Ti ≤ h)Pij
h

= lim
h→0

νihPij + o(h)Pij
h

= qij. (9.12)

Lemma 9.3.5 (Continous Chapman-Kolmogorov Equations). For all s, t ≥ 0 and i, j ∈ S,

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s). (9.13)

Proof. Exercise.

Theorem 9.3.6 (Kolmogorov’s Backward and Forward Equations). For all i, j ∈ S and t ≥ 0,
P ′ij(t) =

∑
k 6=i

qikPkj(t)− νiPij(t), (9.14)

and
P ′ij(t) =

∑
k 6=j

qkjPik(t)− νjPij(t). (9.15)
Proof. Beyond the scope of this course.

Corollary 9.3.7. Suppose under some “nice” (analogous to discrete-time) conditions, we have lim-
iting probabilities defined by πj = limt→∞ Pij(t). Then, they satisfy that for all states j,

νjπj =
∑
k 6=j

qkjπk. (9.16)
Proof. Using the forward equation, we have

lim
t→∞

P ′ij(t) = lim
t→∞

∑
k 6=j

qkjPik(t)− νjPij(t) =
∑
k 6=j

qkjπk − νjπj, (9.17)

where we have supposed we can swap the order of limit and summation. It remains to observe that
since Pij(t) ∈ [0, 1] for all t, if P ′ij(t) converges then it must converge to zero.
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9.4 Birth and Death Processes

Definition 9.4.1. Consider a continuous-time Markov chain where X(t) represents the number of
people in system at time t. Further, suppose that when there are n people in system, people arrive
at exponential rate λn and depart at exponential rate µn. This is called a birth and death process.

Lemma 9.4.2. In a birth and death process, the transition rate between states is νn = λn + µn and
the transition probabilities are

P01 = 1, Pn,n+1 = λn
λn + µn

, and Pn,n−1 = µn
λn + µn

. (9.18)

Proof. Suppose X(t) = n and define random variables An ∼ Exp(λn) and Bn ∼ Exp(µn). Then,
the next state is En = X(t + Tn) = (n + 1)I{An < Bn} + (n − 1)I{An ≥ Bn}. Observe that
P[An > Bn] = E

[
P[An > Bn | Bn]

]
= E[g(Bn)]. Then, notice that g(y) = P[An > y] = e−λny. Thus,

E[g(Bn)] =
∫ ∞

0
e−λnyµne

−µnydy = µn

∫ ∞
0

e−(λn+µn)ydy = µn
λn + µn

. (9.19)

The other probability can be found analogously.

Theorem 9.4.3. Let π be the stationary distribution of the state taken by a birth and death process.
Then, if Cn =

∏n−1
i=0 λi∏n

i=1 µi
,

π0 = 1
1 +∑∞

n=1Cn
and πn = Cn

1 +∑∞
n=1Cn

. (9.20)
Proof. Recall that for all j ∈ S, νjπj = ∑

k 6=j qkjπk. That is,

λ0π0 = µ1π1

(λ1 + µ1)π1 = µ2π2 + λ0π0
...

(λn + µn)πn = µn+1πn+1 + λn−1πn−1.

(9.21)

Combining each equation to the next one gives λnπn = µn+1πn+1 for all n ≥ 0. Solving this gives

π1 = λ0

µ1
π0

π2 = λ1

µ2
π1 = λ1λ0

µ2µ1
π0

...

πn = λn−1

µn
πn−1 = λn−1 · · ·λ0

µn · · ·µ1
π0.

(9.22)

Finally, since ∑∞n=0 πn = 1, we get

1 = π0 + π0

∞∑
n=1

λn−1 · · ·λ0

µn · · ·µ1
. (9.23)
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9.5 M/M/s Queue

Definition 9.5.1. A customer of interest arrives to the queue to find L customers in system with
LQ of them waiting. They then will wait for WQ units of time before having a service that lasts S
units of time, meaning they spent a total of W =WQ + S units of time in the system. The averages
of these values are denoted by L, LQ, WQ, 1/µ, and W respectively.

Definition 9.5.2. For the M/M/s queue, arrivals occur according to a Poisson process at rate λ and
departures occur exponentially at rate nµ if there are n customers in service, unless n > s, and then
at rate sµ.

Theorem 9.5.3 (PASTA). For a queue with Poisson arrivals,

P[a new customer finds n in system] = πn. (9.24)
Proof (Heuristic). Clearly,

P[new customer finds n in system | customer arrived at time t] = P[n in system at time t] = πn.
(9.25)

However, since a Poisson process has independent increments, knowing the time the customer arrived
at does not affect how the past proceeded, which means it does not affect how many are in system.

Lemma 9.5.4. For an M/M/s queue, if ρ = λ
sµ

then the probability a new customer finds the queue
empty is

π0 =
[
s−1∑
n=0

λn

n!µn + λs

s!µs(1− ρ)

]−1

. (9.26)

Proof. Observe that this is a birth and death process with

Cn =


λn

n!µn if n ≤ s
λn

sn−ss!µn if n > s.
(9.27)

Theorem 9.5.5 (Little’s Law). For any stable queue that is non-preemptive with λ = limt→∞
N(t)
t

,

L = λW and LQ = λWQ. (9.28)
Proof (M/M/1 Case). Since Cn = ρn, πn = ρn(1− ρ) for n ≥ 0. Then,

L =
∞∑
n=0

nπn = (1− ρ)
∞∑
n=0

nρn = (1− ρ) ρ

(1− ρ)2 = ρ

1− ρ. (9.29)

Now, if you arrive to find L in system, your total time in system will be L + 1 exponential service
times. Then, using that the sum of exponentials is gamma, E[W | L] = L+1

µ
, so

W = L+ 1
µ

= 1
µ(1− ρ) = 1

µ− λ
= L

λ
. (9.30)

Similarly, WQ = W − 1/µ = ρ
µ(1−ρ) , and LQ = L− ρ = ρ2

1−ρ = λ ρ
µ(1−ρ) = λWQ.
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9.6 Exercises

Exercise 9.1. Prove Lemma 9.3.5.

Exercise 9.2 (Ross 8.1). For the M/M/1 queue, compute the expected number of arrivals during
a service period and the probability no customers arrive during a service period.

Exercise 9.3 (Ross 8.4). Show that for an M/M/1 queue, conditional on a customer waiting x > 0
units of time before entering service, L − 1 ∼ Pois(λ). (That is, compute the conditional pmf.)

Exercise 9.4 (Ross 8.11). Consider a M/M/1 queue with the following variation: Whenever a
service is completed a departure occurs only with probability α. With probability 1 - α the customer,
instead of leaving, joins the end of the queue. Note that a customer may be serviced more than once.

a) Find π.
b) Find the expected waiting time of a customer from the time they arrive until they enter service

for the first time.
c) What is the probability that a customer enters service exactly n times, n = 1, 2, ...?
d) What is the expected amount of time that a customer spends in service (which does not include

the time they spend waiting in line)?
e) What is the distribution of the total length of time a customer spends being served?

Exercise 9.5 (Ross 8.13). Two customers move about among three servers. Upon completion of
service at server i, the customer leaves that server and enters service at whichever of the other two
servers is free. (Therefore, there are always two busy servers.) If the service times at server i are
exponential with rate µi, what proportion of time is server i idle?

Exercise 9.6 (Ross 8.16). Customers arrive at a two-server system according to a Poisson process
having rate λ = 5. An arrival finding server 1 free will begin service with that server. An arrival
finding server 1 busy and server 2 free will enter service with server 2. An arrival finding both servers
busy goes away. Once a customer is served by either server, he departs the system. The service times
at server i are exponential with rates µi, where µ1 = 4 and µ2 = 2. (What is the average time an
entering customer spends in the system, and what proportion of time is server 2 busy?

Exercise 9.7 (Ross 8.28). Let D denote the time between successive departures in a stationary
M/M/1 queue with λ < µ. Show, by conditioning on whether or not a departure has left the system
empty, that D is exponential with rate λ.
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